28 research outputs found

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

    Get PDF
    BACKGROUND: Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. METHODS: A 3D acoustical prostate model was created using photographic data from the Visible Human Project(®). The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin(® )plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. RESULTS: Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38°C and 43.1 ± 0.80°C, respectively, for 20 minutes of heating. CONCLUSION: Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate

    Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible

    No full text
    High-pressure processing (HPP) is a novel technology for the production of minimally processed food products with better retention of the natural aroma, fresh-like taste, additive-free, stable, convenient to use. In this regard safety of products by microbial inactivation is likely to become an important focus for food technologists from the research and industrial field. High pressure induces conformational changes in the cell membranes, cell morphology. It perturbs biochemical reactions, as well as the genetic mechanism of the microorganisms, thus ensures the reduction in the microbial count. Keeping in view the commercial demand of HPP products, the scientific literature available on the mechanism of inactivation by high pressure and intrinsic and extrinsic factors affecting the efficiency of HPP are systematically and critically analyzed in this review to develop a clear understanding of these issues. Modeling applied to study the microbial inactivation kinetics by HPP is also discussed for the benefit of interested readers
    corecore