6,492 research outputs found
The role of magnetic anisotropy in spin filter junctions
We have fabricated oxide based spin filter junctions in which we demonstrate
that magnetic anisotropy can be used to tune the transport behavior of spin
filter junctions. Until recently, spin filters have been largely comprised of
polycrystalline materials where the spin filter barrier layer and one of the
electrodes are ferromagnetic. These spin filter junctions have relied on the
weak magnetic coupling between one ferromagnetic electrode and a barrier layer
or the insertion of a nonmagnetic insulating layer in between the spin filter
barrier and electrode. We have demonstrated spin filtering behavior in
La0.7Sr0.3MnO3/chromite/Fe3O4 junctions without nonmagnetic spacer layers where
the interface anisotropy plays a significant role in determining transport
behavior. Detailed studies of chemical and magnetic structure at the interfaces
indicate that abrupt changes in magnetic anisotropy across the
non-isostructural interface is the cause of the significant suppression of
junction magnetoresistance in junctions with MnCr2O4 barrier layers.Comment: 7 pages, 7 figure
Criteria for Elves and Sprites on Schumann Resonance Observations
Ground flashes with positive polarity associated with both sprites and elves excite the Earth\u27s Schumann resonances to amplitudes several times greater than the background resonances. Theoretical predictions for dielectric breakdown in the mesosphere are tested using ELF methods to evaluate vertical charge moments of positive ground flashes. Comparisons of the measured time constants for lightning charge transfer with the electrostatic relaxation time at altitudes of nighttime sprite initiation (50–70 km) generally validate the electrostatic assumption in predictions made initially by Wilson [1925]. The measured charge moments (Q dS = 200–2000 C-km) are large in comparison with ordinary negative lightning but are generally insufficient to account for conventional air breakdown at sprite altitudes. The measured charge moments, however, are sufficient to account for electron runaway breakdown, and the long avalanche length in this mechanism also accounts for the exclusive association of sprites with ground flashes of positive polarity. The association of elves with large peak currents (50–200 kA) measured by the National Lightning Detection Network in a band pass beyond the Schumann resonance range is consistent with an electromagnetic pulse mechanism for these events
Ad hoc influenza vaccination during years of significant antigenic drift in a tropical city with 2 seasonal peaks
We evaluated the acceptability of an additional ad hoc influenza vaccination among the health care professionals following seasons with significant antigenic drift. Self-administered, anonymous surveys were performed by hard copy questionnaires in public hospitals, and by an on-line platform available to all healthcare professionals, from April 1st to May 31st, 2015. A total of 1290 healthcare professionals completed the questionnaires, including doctors, nurses, and allied health professionals working in both the public and private systems. Only 31.8% of participating respondents expressed an intention to receive the additional vaccine, despite that the majority of them agreed or strongly agreed that it would bring benefit to the community (88.9%), save lives (86.7%), reduce medical expenses (76.3%), satisfy public expectation (82.8%), and increase awareness of vaccination (86.1%). However, a significant proportion expressed concern that the vaccine could disturb the normal immunization schedule (45.5%); felt uncertain what to do in the next vaccination round (66.0%); perceived that the summer peak might not occur (48.2%); and believed that the summer peak might not be of the same virus (83.5%). Furthermore, 27.8% of all respondents expected that the additional vaccination could weaken the efficacy of previous vaccinations; 51.3% was concerned about side effects; and 61.3% estimated that there would be a low uptake rate. If the supply of vaccine was limited, higher priority groups were considered to include the elderly aged ≥65 years with chronic medical conditions (89.2%), the elderly living in residential care homes (87.4%), and long-stay residents of institutions for the disabled (80.7%). The strongest factors associated with accepting the additional vaccine included immunization with influenza vaccines in the past 3 years, higher perceived risk of contracting influenza, and higher perceived severity of the disease impact. The acceptability to an additional ad hoc influenza vaccination was low among healthcare professionals. This could have a negative impact on such additional vaccination campaigns since healthcare professionals are a key driver for vaccine acceptance. The discordance in perceived risk and acceptance of vaccination regarding self versus public deserves further evaluation
Imprints of the Quantum World in Classical Mechanics
The imprints left by quantum mechanics in classical (Hamiltonian) mechanics
are much more numerous than is usually believed. We show Using no physical
hypotheses) that the Schroedinger equation for a nonrelativistic system of
spinless particles is a classical equation which is equivalent to Hamilton's
equations.Comment: Paper submitted to Foundations of Physic
Interface Structure and Transport of Complex Oxide Junctions
The interface structure and magnetism of hybrid magnetic tunnel junction-spin filter devices have been investigated and correlated with their transport properties. Magnetic tunnel junctions made of a spinel NiMn2O4 tunnel barrier sandwiched by theoretically predicted half-metallic electrodes, perovskite La0.7Sr0.3MnO3 and spinel Fe3O4, exhibit very high crystalline quality as observed by transmission electron microscopy. Structurally abrupt interfaces allow for the distinct magnetic switching of the electrodes as well as large junction magnetoresistance. The change in the magnetic anisotropy observed at the spinel-spinel interface is indicative of a thin interdiffused magnetically soft interfacial layer. The strong exchange coupling at this interface allows for low background magnetoresistance, and a spin-filter effect with when the barrier is ferrimagnetic
Room temperature magnetic barrier layers in magnetic tunnel junctions
We investigate the spin transport and interfacial magnetism of magnetic tunnel junctions with highly spin polarized LSMO and Fe3O4 electrodes and a ferrimagnetic NiFe2O4 (NFO) barrier layer. The spin dependent transport can be understood in terms of magnon-assisted spin dependent tunneling where the magnons are excited in the barrier layer itself. The NFO/Fe3O4 interface displays strong magnetic coupling, while the LSMO/NFO interface exhibits clear decoupling as determined by a combination of X-ray absorption spectroscopy and X-ray magnetic circular dichroism. This decoupling allows for distinct parallel and antiparallel electrode states in this all-magnetic trilayer. The spin transport of these devices, dominated by the NFO barrier layer magnetism, leads to a symmetric bias dependence of the junction magnetoresistance at all temperatures
From constructive field theory to fractional stochastic calculus. (II) Constructive proof of convergence for the L\'evy area of fractional Brownian motion with Hurst index
{Let be a -dimensional fractional Brownian motion
with Hurst index , or more generally a Gaussian process whose paths
have the same local regularity. Defining properly iterated integrals of is
a difficult task because of the low H\"older regularity index of its paths. Yet
rough path theory shows it is the key to the construction of a stochastic
calculus with respect to , or to solving differential equations driven by
.
We intend to show in a series of papers how to desingularize iterated
integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure
defined by a limit in law procedure. Convergence is proved by using "standard"
tools of constructive field theory, in particular cluster expansions and
renormalization. These powerful tools allow optimal estimates, and call for an
extension of Gaussian tools such as for instance the Malliavin calculus.
After a first introductory paper \cite{MagUnt1}, this one concentrates on the
details of the constructive proof of convergence for second-order iterated
integrals, also known as L\'evy area
Smart garment for trunk posture monitoring: A preliminary study
© 2008 Wong and Wong; licensee BioMed Central Ltd
- …