712 research outputs found

    Applicability of the Fisher Equation to Bacterial Population Dynamics

    Full text link
    The applicability of the Fisher equation, which combines diffusion with logistic nonlinearity, to population dynamics of bacterial colonies is studied with the help of explicit analytic solutions for the spatial distribution of a stationary bacterial population under a static mask. The mask protects the bacteria from ultraviolet light. The solution, which is in terms of Jacobian elliptic functions, is used to provide a practical prescription to extract Fisher equation parameters from observations and to decide on the validity of the Fisher equation.Comment: 5 pages, 3 figs. include

    Kosterlitz Thouless Universality in Dimer Models

    Full text link
    Using the monomer-dimer representation of strongly coupled U(N) lattice gauge theories with staggered fermions, we study finite temperature chiral phase transitions in (2+1) dimensions. A new cluster algorithm allows us to compute monomer-monomer and dimer-dimer correlations at zero monomer density (chiral limit) accurately on large lattices. This makes it possible to show convincingly, for the first time, that these models undergo a finite temperature phase transition which belongs to the Kosterlitz-Thouless universality class. We find that this universality class is unaffected even in the large N limit. This shows that the mean field analysis often used in this limit breaks down in the critical region.Comment: 4 pages, 4 figure

    Non-hermitean delocalization in an array of wells with variable-range widths

    Full text link
    Nonhermitean hamiltonians of convection-diffusion type occur in the description of vortex motion in the presence of a tilted magnetic field as well as in models of driven population dynamics. We study such hamiltonians in the case of rectangular barriers of variable size. We determine Lyapunov exponent and wavenumber of the eigenfunctions within an adiabatic approach, allowing to reduce the original d=2 phase space to a d=1 attractor. PACS numbers:05.70.Ln,72.15Rn,74.60.GeComment: 20 pages,10 figure

    Test of Replica Theory: Thermodynamics of 2D Model Systems with Quenched Disorder

    Full text link
    We study the statistics of thermodynamic quantities in two related systems with quenched disorder: A (1+1)-dimensional planar lattice of elastic lines in a random potential and the 2-dimensional random bond dimer model. The first system is examined by a replica-symmetric Bethe ansatz (RBA) while the latter is studied numerically by a polynomial algorithm which circumvents slow glassy dynamics. We establish a mapping of the two models which allows for a detailed comparison of RBA predictions and simulations. Over a wide range of disorder strength, the effective lattice stiffness and cumulants of various thermodynamic quantities in both approaches are found to agree excellently. Our comparison provides, for the first time, a detailed quantitative confirmation of the replica approach and renders the planar line lattice a unique testing ground for concepts in random systems.Comment: 16 pages, 14 figure

    Integration of genetics into a systems model of electrocardiographic traits using humanCVD BeadChip

    Get PDF
    <p>Background—Electrocardiographic traits are important, substantially heritable determinants of risk of arrhythmias and sudden cardiac death.</p> <p>Methods and Results—In this study, 3 population-based cohorts (n=10 526) genotyped with the Illumina HumanCVD Beadchip and 4 quantitative electrocardiographic traits (PR interval, QRS axis, QRS duration, and QTc interval) were evaluated for single-nucleotide polymorphism associations. Six gene regions contained single nucleotide polymorphisms associated with these traits at P<10−6, including SCN5A (PR interval and QRS duration), CAV1-CAV2 locus (PR interval), CDKN1A (QRS duration), NOS1AP, KCNH2, and KCNQ1 (QTc interval). Expression quantitative trait loci analyses of top associated single-nucleotide polymorphisms were undertaken in human heart and aortic tissues. NOS1AP, SCN5A, IGFBP3, CYP2C9, and CAV1 showed evidence of differential allelic expression. We modeled the effects of ion channel activity on electrocardiographic parameters, estimating the change in gene expression that would account for our observed associations, thus relating epidemiological observations and expression quantitative trait loci data to a systems model of the ECG.</p> <p>Conclusions—These association results replicate and refine the mapping of previous genome-wide association study findings for electrocardiographic traits, while the expression analysis and modeling approaches offer supporting evidence for a functional role of some of these loci in cardiac excitation/conduction.</p&gt

    Population Dynamics and Non-Hermitian Localization

    Full text link
    We review localization with non-Hermitian time evolution as applied to simple models of population biology with spatially varying growth profiles and convection. Convection leads to a constant imaginary vector potential in the Schroedinger-like operator which appears in linearized growth models. We illustrate the basic ideas by reviewing how convection affects the evolution of a population influenced by a simple square well growth profile. Results from discrete lattice growth models in both one and two dimensions are presented. A set of similarity transformations which lead to exact results for the spectrum and winding numbers of eigenfunctions for random growth rates in one dimension is described in detail. We discuss the influence of boundary conditions, and argue that periodic boundary conditions lead to results which are in fact typical of a broad class of growth problems with convection.Comment: 19 pages, 11 figure

    Adaptation of Autocatalytic Fluctuations to Diffusive Noise

    Full text link
    Evolution of a system of diffusing and proliferating mortal reactants is analyzed in the presence of randomly moving catalysts. While the continuum description of the problem predicts reactant extinction as the average growth rate becomes negative, growth rate fluctuations induced by the discrete nature of the agents are shown to allow for an active phase, where reactants proliferate as their spatial configuration adapts to the fluctuations of the catalysts density. The model is explored by employing field theoretical techniques, numerical simulations and strong coupling analysis. For d<=2, the system is shown to exhibits an active phase at any growth rate, while for d>2 a kinetic phase transition is predicted. The applicability of this model as a prototype for a host of phenomena which exhibit self organization is discussed.Comment: 6 pages 6 figur

    Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor

    Get PDF
    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.Comment: 4 pages, two eps figure
    • …
    corecore