1,673 research outputs found

    Hydrodynamics of liquids of arbitrarily curved flux-lines and vortex loops

    Full text link
    We derive a hydrodynamic model for a liquid of arbitrarily curved flux-lines and vortex loops using the mapping of the vortex liquid onto a liquid of relativistic charged quantum bosons in 2+1 dimensions recently suggested by Tesanovic and by Sudbo and collaborators. The loops in the flux-line system correspond to particle-antiparticle fluctuations in the bosons. We explicitly incorporate the externally applied magnetic field which in the boson model corresponds to a chemical potential associated with the conserved charge density of the bosons. We propose this model as a convenient and physically appealing starting point for studying the properties of the vortex liquid

    Theory of Double-Sided Flux Decorations

    Full text link
    A novel two-sided Bitter decoration technique was recently employed by Yao et al. to study the structure of the magnetic vortex array in high-temperature superconductors. Here we discuss the analysis of such experiments. We show that two-sided decorations can be used to infer {\it quantitative} information about the bulk properties of flux arrays, and discuss how a least squares analysis of the local density differences can be used to bring the two sides into registry. Information about the tilt, compressional and shear moduli of bulk vortex configurations can be extracted from these measurements.Comment: 17 pages, 3 figures not included (to request send email to [email protected]

    Fluctuations and Intrinsic Pinning in Layered Superconductors

    Full text link
    A flux liquid can condense into a smectic crystal in a pure layered superconductors with the magnetic field oriented nearly parallel to the layers. If the smectic order is commensurate with the layering, this crystal is {\sl stable} to point disorder. By tilting and adjusting the magnitude of the applied field, both incommensurate and tilted smectic and crystalline phases are found. We discuss transport near the second order smectic freezing transition, and show that permeation modes lead to a small non--zero resistivity and large but finite tilt modulus in the smectic crystal.Comment: 4 pages + 1 style file + 1 figure (as uufile) appended, REVTEX 3.

    Interstitials, Vacancies and Dislocations in Flux-Line Lattices: A Theory of Vortex Crystals, Supersolids and Liquids

    Full text link
    We study a three dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of vacancy, interstitial and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The coupling to vacancies and interstitials - which are always present in the liquid state - allows dislocations to relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength properties of the resulting state are formally identical to that of the ``flux-line hexatic'' that is a candidate ``normal'' hexatically ordered vortex liquid state.Comment: 21 RevTeX pgs, 7 eps figures uuencoded; corrected typos, published versio

    Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors

    Full text link
    We study the ground state and low energy excitations of vortices pinned to columnar defects in superconductors, taking into account the long--range interaction between the fluxons. We consider the ``underfilled'' situation in the Bose glass phase, where each flux line is attached to one of the defects, while some pins remain unoccupied. By exploiting an analogy with disordered semiconductors, we calculate the spatial configurations in the ground state, as well as the distribution of pinning energies, using a zero--temperature Monte Carlo algorithm minimizing the total energy with respect to all possible one--vortex transfers. Intervortex repulsion leads to strong correlations whenever the London penetration depth exceeds the fluxon spacing. A pronounced peak appears in the static structure factor S(q)S(q) for low filling fractions f≤0.3f \leq 0.3. Interactions lead to a broad Coulomb gap in the distribution of pinning energies g(ϵ)g(\epsilon) near the chemical potential ÎĽ\mu, separating the occupied and empty pins. The vanishing of g(ϵ)g(\epsilon) at ÎĽ\mu leads to a considerable reduction of variable--range hopping vortex transport by correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact [email protected]

    Canonical Transformations and Gauge Fixing in the Triplectic Quantization

    Get PDF
    We show that the generators of canonical transformations in the triplectic manifold must satisfy constraints that have no parallel in the usual field antifield quantization. A general form for these transformations is presented. Then we consider gauge fixing by means of canonical transformations in this Sp(2) covariant scheme, finding a relation between generators and gauge fixing functions. The existence of a wide class of solutions to this relation nicely reflects the large freedom of the gauge fixing process in the triplectic quantization. Some solutions for the generators are discussed. Our results are then illustrated by the example of Yang Mills theory.Comment: A new section about the cohomological approach to the extended BRST quantization has been included. Some new references were added too. Final version to appear in Nucl. Phys.B. 12 pages, LATE

    Interface optical phonons in spheroidal dots: Raman selection rules

    Full text link
    The contribution of interface phonons to the first order Raman scattering in nanocrystals with non spherical geometry is analyzed. Interface optical phonons in the spheroidal geometry are discussed and the corresponding Frohlich-like electron-phonon interaction is reported in the framework of the dielectric continuum approach. It is shown that the interface phonon modes are strongly dependent on the nanocrystal geometry, particularly on the ellipsoid's semi-axis ratio. The new Raman selection rules have revealed that solely interface phonon modes with even angular momentum are allowed to contribute to the first order phonon-assisted scattering of light. On this basis we are able to give an explanation for the observed low frequency shoulders present in the Raman cross-section of several II-VI semiconductor nanostructures.Comment: 8 pages, 2 figure

    Numerical Study of the Spin-Flop Transition in Anisotropic Spin-1/2 Antiferromagnets

    Full text link
    Magnetization processes of the spin-1/2 antiferromagnetic XXZXXZ model in two and three spatial dimensions are studied using quantum Monte Carlo method based on stochastic series expansions. Recently developed operator-loop algorithm enables us to show a clear evidence of the first-order phase transition in the presence of an external magnetic field. Phase diagrams of closely related systems, hard core bosons with nearest-neighbor repulsions, are also discussed focusing on possibilities of phase-separated and supersolid phases.Comment: 4 pages, Revtex version 4, with 4 figures embedded, To appear in Phys. Rev.

    Simultaneous Diagonal and Off Diagonal Order in the Bose--Hubbard Hamiltonian

    Full text link
    The Bose-Hubbard model exhibits a rich phase diagram consisting both of insulating regimes where diagonal long range (solid) order dominates as well as conducting regimes where off diagonal long range order (superfluidity) is present. In this paper we describe the results of Quantum Monte Carlo calculations of the phase diagram, both for the hard and soft core cases, with a particular focus on the possibility of simultaneous superfluid and solid order. We also discuss the appearance of phase separation in the model. The simulations are compared with analytic calculations of the phase diagram and spin wave dispersion.Comment: 28 pages plus 24 figures, uuencoded Revtex+postscript file

    Dynamic Vortex Phases and Pinning in Superconductors with Twin Boundaries

    Full text link
    We investigate the pinning and driven dynamics of vortices interacting with twin boundaries using large scale molecular dynamics simulations on samples with near one million pinning sites. For low applied driving forces, the vortex lattice orients itself parallel to the twin boundary and we observe the creation of a flux gradient and vortex free region near the edges of the twin boundary. For increasing drive, we find evidence for several distinct dynamical flow phases which we characterize by the density of defects in the vortex lattice, the microscopic vortex flow patterns, and orientation of the vortex lattice. We show that these different dynamical phases can be directly related to microscopically measurable voltage - current V(I) curves and voltage noise. By conducting a series of simulations for various twin boundary parameters we derive several vortex dynamic phase diagrams.Comment: 5 figures, to appear in Phys. Rev.
    • …
    corecore