6,733 research outputs found
Surface modes and multi-power law structure in the early-time response of magnetic targets
It was recently demonstrated [P. B. Weichman, Phys. Rev. Lett. {\bf 91},
143908 (2003)] that the scattered electric field from highly conducting targets
following a rapidly terminated electromagnetic pulse displays a universal
power law divergence at early time. It is now shown that for
strongly permeable targets, , where is the
background magnetic permeability, the early time regime separates into two
distinct power law regimes, with the early-early time behavior
crossing over to at late-early time, reflecting a spectrum of
magnetic surface modes. The latter is confirmed by data from ferrous targets
where , and for which the early-early time regime
is invisibly narrow.Comment: 4 pages, 3 figure
Statin use and risk of community acquired pneumonia in older people: population based case-control study
Objective To test the hypothesis that hydroxymethyl glutaryl coenzyme A reductase inhibitors (statins) may decrease the risk of community acquired pneumonia
Theory of orientational ordering in colloidal molecular crystals
Freezing of charged colloids on square or triangular two-dimensional periodic
substrates has been recently shown to realize a rich variety of orientational
orders. We propose a theoretical framework to analyze the corresponding
structures. A fundamental ingredient is that a non spherical charged object in
an electrolyte creates a screened electrostatic potential that is anisotropic
at any distance. Our approach is in excellent agreement with the known
experimental and numerical results, and explains in simple terms the reentrant
orientational melting observed in these so called colloidal molecular crystals.
We also investigate the case of a rectangular periodic substrate and predict an
unusual phase transition between orientationnaly ordered states, as the aspect
ratio of the unit cell is changed.Comment: 4 pages, to appear in Phys. Rev. Let
Validation of Floating Node Method Using Three-Point Bend Doubler Under Quasi-Static Loading
The NASA Advanced Composite Project (ACP), an industry/government/university partnership, has embarked upon the task of developing technology that can aid in reducing the time line for structural certification of aircraft composite parts using a combination of technologies, one of which is high fidelity damage progression computational methods. Phase II of this project included a task for validating an approach based on the Floating Node Method combined with Directional Cohesive Elements (FNM-DCZE). This paper discusses predicted damage onset and growth in a three-point bend doubler specimen compared to experimental results. Sensitivity of the simulations to mesh refinement as well as key material properties and thermal effects are studied and reported. Overall, qualitative results suggest the main aspects of the damage progression have been captured, with the simulated damage morphology and sequence of events resembling closely what was observed experimentally. Quantitatively, the first load-peak is predicted. However, the re-loading observed in the experiments, after the first load peak, is not captured numerically, suggesting further investigation may be worth pursuing
Transistor and Diode Studies
Contains reports on four research projects.Lincoln Laboratory (Purchase Order DDL-B187)United States Department of the ArmyUnited States Department of the NavyUnited States Department of the Air Force (Contract AF19(122)-458
Upper limit on spontaneous supercurrents in SrRuO
It is widely believed that the perovskite SrRuO is an unconventional
superconductor with broken time reversal symmetry. It has been predicted that
superconductors with broken time reversal symmetry should have spontaneously
generated supercurrents at edges and domain walls. We have done careful imaging
of the magnetic fields above SrRuO single crystals using scanning Hall
bar and SQUID microscopies, and see no evidence for such spontaneously
generated supercurrents. We use the results from our magnetic imaging to place
upper limits on the spontaneously generated supercurrents at edges and domain
walls as a function of domain size. For a single domain, this upper limit is
below the predicted signal by two orders of magnitude. We speculate on the
causes and implications of the lack of large spontaneous supercurrents in this
very interesting superconducting system.Comment: 9 page
Recommended from our members
Individual assets, market structure and the drivers of return
Much prior research on the structure and performance of UK real estate portfolios has relied on aggregated measures for sector and region. For these groupings to have validity, the performance of individual properties within each group should be similar. This paper analyses a sample of 1,200 properties using multiple discriminant analysis and cluster analysis techniques. It is shown that conventional property type and spatial classifications do not capture the variation in return behaviour at the individual building level. The major feature is heterogeneity - but there may be distinctions between growth and income properties and between single and multi-let properties that could help refine portfolio structures
On the Two q-Analogue Logarithmic Functions
There is a simple, multi-sheet Riemann surface associated with e_q(z)'s
inverse function ln_q(w) for 0< q < 1. A principal sheet for ln_q(w) can be
defined. However, the topology of the Riemann surface for ln_q(w) changes each
time "q" increases above the collision point of a pair of the turning points of
e_q(x). There is also a power series representation for ln_q(1+w). An
infinite-product representation for e_q(z) is used to obtain the ordinary
natural logarithm ln{e_q(z)} and the values of sum rules for the zeros "z_i" of
e_q(z). For |z|<|z_1|, e_q(z)=exp{b(z)} where b(z) is a simple, explicit power
series in terms of values of these sum rules. The values of the sum rules for
the q-trigonometric functions, sin_q(z) and cos_q(z), are q-deformations of the
usual Bernoulli numbers.Comment: This is the final version to appear in J.Phys.A: Math. & General.
Some explict formulas added, and to update the reference
Quantitative transcription factor binding kinetics at the single-molecule level
We have investigated the binding interaction between the bacteriophage lambda
repressor CI and its target DNA using total internal reflection fluorescence
microscopy. Large, step-wise changes in the intensity of the red fluorescent
protein fused to CI were observed as it associated and dissociated from
individually labeled single molecule DNA targets. The stochastic association
and dissociation were characterized by Poisson statistics. Dark and bright
intervals were measured for thousands of individual events. The exponential
distribution of the intervals allowed direct determination of the association
and dissociation rate constants, ka and kd respectively. We resolved in detail
how ka and kd varied as a function of 3 control parameters, the DNA length L,
the CI dimer concentration, and the binding affinity. Our results show that
although interaction with non-operator DNA sequences are observable, CI binding
to the operator site is not dependent on the length of flanking non-operator
DNA.Comment: 34 pages, 10 figures, accepted by Biophysical Journa
- …