40,018 research outputs found
A comparison of experimental and theoretical results for rotordynamic coefficients of four annular gas seals
The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described
Optical fiber coupling method and apparatus
Systems are described for coupling a pair of optical fibers to pass light between them, which enables a coupler to be easily made, and with simple equipment, while closely controlling the characteristics of the coupler. One method includes mounting a pair of optical fibers on a block having a large hole therein, so the fibers extend across the hole while lying adjacent and parallel to one another. The fibers are immersed in an etchant to reduce the thickness of cladding around the fiber core. The fibers are joined together by applying a liquid polymer so the polymer-air interface moves along the length of the fibers to bring the fibers together in a zipper-like manner, and to progressively lay a thin coating of the polymer on the fibers
Extracting Spooky-activation-at-a-distance from Considerations of Entanglement
Following an early claim by Nelson & McEvoy \cite{Nelson:McEvoy:2007}
suggesting that word associations can display `spooky action at a distance
behaviour', a serious investigation of the potentially quantum nature of such
associations is currently underway. This paper presents a simple quantum model
of a word association system. It is shown that a quantum model of word
entanglement can recover aspects of both the Spreading Activation equation and
the Spooky-activation-at-a-distance equation, both of which are used to model
the activation level of words in human memory.Comment: 13 pages, 2 figures; To appear in Proceedings of the Third Quantum
Interaction Symposium, Lecture Notes in Artificial Intelligence, vol 5494,
Springer, 200
A high-Reynolds-number seal test facility: Facility description and preliminary test data
A facility has been developed for testing the leakage and rotordynamic characteristics of interstage-seal configurations for the HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine). Axial Reynolds numbers on the order of 400,000 are realized in the test facility by using a Dupont freon fluid called Halon (CBrF3). The kinematic viscosity of Halon is of the same order as the liquid hydrogen used in the HPFTP. Initial testing has focused on the current flight configurations (a three-segment, stepped unit) and a convergent-taper candidate
Point Defect Dynamics in Two-Dimensional Colloidal Crystals
We study the topological configurations and dynamics of individual point
defect vacancies and interstitials in a two-dimensional colloidal crystal. Our
Brownian dynamics simulations show that the diffusion mechanism for vacancy
defects occurs in two phases. The defect can glide along the crystal lattice
directions, and it can rotate during an excited topological transition
configuration to assume a different direction for the next period of gliding.
The results for the vacancy defects are in good agreement with recent
experiments. For the interstitial point defects, which were not studied in the
experiments, we find several of the same modes of motion as in the vacancy
defect case along with two additional diffusion pathways. The interstitial
defects are more mobile than the vacancy defects due to the more
two-dimensional nature of the diffusion of the interstitial defects.Comment: 8 pages, 9 postscript figures. Version to appear in Phys. Rev.
Patterned Geometries and Hydrodynamics at the Vortex Bose Glass Transition
Patterned irradiation of cuprate superconductors with columnar defects allows
a new generation of experiments which can probe the properties of vortex
liquids by confining them to controlled geometries. Here we show that an
analysis of such experiments that combines an inhomogeneous Bose glass scaling
theory with the hydrodynamic description of viscous flow of vortex liquids can
be used to infer the critical behavior near the Bose glass transition. The
shear viscosity is predicted to diverge as at the Bose glass
transition, with the dynamical critical exponent.Comment: 5 pages, 4 figure
Plasticity in current-driven vortex lattices
We present a theoretical analysis of recent experiments on current-driven
vortex dynamics in the Corbino disk geometry. This geometry introduces
controlled spatial gradients in the driving force and allows the study of the
onset of plasticity and tearing in clean vortex lattices. We describe plastic
slip in terms of the stress-driven unbinding of dislocation pairs, which in
turn contribute to the relaxation of the shear, yielding a nonlinear response.
The steady state density of free dislocations induced by the applied stress is
calculated as a function of the applied current and temperature. A criterion
for the onset of plasticity at a radial location in the disk yields a
temperature-dependent critical current that is in qualitative agreement with
experiments.Comment: 11 pages, 4 figure
Remote sensing of vigor loss in conifers due to dwarf mistletoe
The initial operation of a multiband/multidate tower-tramway test site in northeastern Minnesota for the development of specifications for subsequent multiband aerial photography of more extensive study areas was completed. Multiband/multidate configurations suggested by the tower-tramway studies were and will be flown with local equipment over the Togo test site. This site was photographed by the NASA RB57F aircraft in August and September 1971. It appears that, of all the film/filter combinations attempted to date (including optical recombining of several spectral band images via photo enhancement techniques), Ektachrome infrared film with a Wratten 12 filter is the best for detecting dwarf mistletoe, and other tree diseases as well. Using this film/filter combination, infection centers are easily detectable even on the smallest photo scale (1:100,000) obtained on the Togo site
Three Numerical Puzzles and the Top Quark's Chiral Weak-Moment
Versus the standard model's t --> W b decay helicity amplitudes, three
numerical puzzles occur at the 0.1 % level when one considers the amplitudes in
the case of an additional (f_M + f_E) coupling of relative strength 53 GeV. The
puzzles are theoretical ones which involve the t --> W b decay helicity
amplitudes in the two cases, the relative strength of this additional coupling,
and the observed masses of these three particles. A deeper analytic realization
is obtained for two of them. Equivalent realizations are given for the
remaining one. An empirical consequence of these analytic realizations is that
it is important to search for effects of a large chiral weak-moment of the
top-quark, the effective mass-scale is about 53 GeV. A full theoretical
resolution would include relating the origin of such a chiral weak-moment and
the mass generation of the top-quark, the W-boson, and probably the b-quark.Comment: 18 pages, 1 postscript table (revised to better explain notation,
model #1, add a little material...
Monte Carlo simulations of , a classical Heisenberg antiferromagnet in two-dimensions with dipolar interaction
We study the phase diagram of a quasi-two dimensional magnetic system with Monte Carlo simulations of a classical Heisenberg spin
Hamiltonian which includes the dipolar interactions between
spins. Our simulations reveal an Ising-like antiferromagnetic phase at low
magnetic fields and an XY phase at high magnetic fields. The boundary between
Ising and XY phases is analyzed with a recently proposed finite size scaling
technique and found to be consistent with a bicritical point at T=0. We discuss
the computational techniques used to handle the weak dipolar interaction and
the difference between our phase diagram and the experimental results.Comment: 13 pages 18 figure
- …