479 research outputs found
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
Orbital excitation blockade and algorithmic cooling in quantum gases
Interaction blockade occurs when strong interactions in a confined few-body
system prevent a particle from occupying an otherwise accessible quantum state.
Blockade phenomena reveal the underlying granular nature of quantum systems and
allow the detection and manipulation of the constituent particles, whether they
are electrons, spins, atoms, or photons. The diverse applications range from
single-electron transistors based on electronic Coulomb blockade to quantum
logic gates in Rydberg atoms. We have observed a new kind of interaction
blockade in transferring ultracold atoms between orbitals in an optical
lattice. In this system, atoms on the same lattice site undergo coherent
collisions described by a contact interaction whose strength depends strongly
on the orbital wavefunctions of the atoms. We induce coherent orbital
excitations by modulating the lattice depth and observe a staircase-type
excitation behavior as we cross the interaction-split resonances by tuning the
modulation frequency. As an application of orbital excitation blockade (OEB),
we demonstrate a novel algorithmic route for cooling quantum gases. Our
realization of algorithmic cooling utilizes a sequence of reversible OEB-based
quantum operations that isolate the entropy in one part of the system, followed
by an irreversible step that removes the entropy from the gas. This work opens
the door to cooling quantum gases down to ultralow entropies, with implications
for developing a microscopic understanding of strongly correlated electron
systems that can be simulated in optical lattices. In addition, the close
analogy between OEB and dipole blockade in Rydberg atoms provides a roadmap for
the implementation of two-qubit gates in a quantum computing architecture with
natural scalability.Comment: 6 pages, 4 figure
KMOS3D:dynamical constraints on the mass budget in early star-forming disks
We exploit deep integral-field spectroscopic observations with KMOS/Very Large Telescope of 240 star-forming disks at 0.6 <z <2.6 to dynamically constrain their mass budget. Our sample consists of massive (≳109.8M⊙) galaxies with sizes Re ≳ 2kpc. By contrasting the observed velocity and dispersion profiles with dynamical models, we find that on average the stellar content contributes 32-7 +8% of the total dynamical mass, with a significant spread among galaxies (68th percentile range fstar ∼ 18%-62%). Including molecular gas as inferred from CO- and dust-based scaling relations, the estimated baryonic mass adds up to 56-12 +17% of the total for the typical galaxy in our sample, reaching ∼90% at z > 2. We conclude that baryons make up most of the mass within the disk regions of high-redshift star-forming disk galaxies, with typical disks at z > 2 being strongly baryon-dominated within R e. Substantial object-to-object variations in both stellar and baryonic mass fractions are observed among the galaxies in our sample, larger than what can be accounted for by the formal uncertainties in their respective measurements. In both cases, the mass fractions correlate most strongly with measures of surface density. High-Σstar galaxies feature stellar mass fractions closer to unity, and systems with high inferred gas or baryonic surface densities leave less room for additional mass components other than stars and molecular gas. Our findings can be interpreted as more extended disks probing further (and more compact disks probing less far) into the dark matter halos that host them.</p
The potential savings of using thiazides as the first choice antihypertensive drug: cost-minimisation analysis
BACKGROUND: All clinical practice guidelines recommend thiazides as a first-choice drug for the management of uncomplicated hypertension. Thiazides are also the lowest priced antihypertensive drugs. Despite this, the use of thiazides is much lower than that of other drug-classes. We wanted to estimate the potential for savings if thiazides were used as the first choice drug for the management of uncomplicated hypertension. METHODS: For six countries (Canada, France, Germany, Norway, the UK and the US) we estimated the number of people that are being treated for hypertension, and the proportion of them that are suitable candidates for thiazide-therapy. By comparing this estimate with thiazide prescribing, we calculated the number of people that could switch from more expensive medication to thiazides. This enabled us to estimate the potential drug-cost savings. The analysis was based on findings from epidemiological studies and drug trials, and data on sales and prescribing provided by IMS for the year 2000. RESULTS: For Canada, France, Germany, Norway, the UK and the US the estimated potential annual savings were US37.4 million, US10.7 million, US433.6 million, respectively. CONCLUSIONS: Millions of dollars could be saved each year if thiazides were prescribed for hypertension in place of more expensive drugs. Our calculations are based on conservative assumptions. The potential for savings is likely considerably higher and may be more than US$1 billion per year in the US
Registered Replication Report: Dijksterhuis and van Knippenberg (1998)
Dijksterhuis and van Knippenberg (1998) reported that participants primed with a category associated with intelligence ("professor") subsequently performed 13% better on a trivia test than participants primed with a category associated with a lack of intelligence ("soccer hooligans"). In two unpublished replications of this study designed to verify the appropriate testing procedures, Dijksterhuis, van Knippenberg, and Holland observed a smaller difference between conditions (2%-3%) as well as a gender difference: Men showed the effect (9.3% and 7.6%), but women did not (0.3% and -0.3%). The procedure used in those replications served as the basis for this multilab Registered Replication Report. A total of 40 laboratories collected data for this project, and 23 of these laboratories met all inclusion criteria. Here we report the meta-analytic results for those 23 direct replications (total N = 4,493), which tested whether performance on a 30-item general-knowledge trivia task differed between these two priming conditions (results of supplementary analyses of the data from all 40 labs, N = 6,454, are also reported). We observed no overall difference in trivia performance between participants primed with the "professor" category and those primed with the "hooligan" category (0.14%) and no moderation by gender
Chemical PARP Inhibition Enhances Growth of Arabidopsis and Reduces Anthocyanin Accumulation and the Activation of Stress Protective Mechanisms
Poly-ADP-ribose polymerase (PARP) post-translationally modifies proteins through the addition of ADP-ribose polymers, yet its role in modulating plant development and stress responses is only poorly understood. The experiments presented here address some of the gaps in our understanding of its role in stress tolerance and thereby provide new insights into tolerance mechanisms and growth. Using a combination of chemical and genetic approaches, this study characterized phenotypes associated with PARP inhibition at the physiological level. Molecular analyses including gene expression analysis, measurement of primary metabolites and redox metabolites were used to understand the underlying processes. The analysis revealed that PARP inhibition represses anthocyanin and ascorbate accumulation under stress conditions. The reduction in defense is correlated with enhanced biomass production. Even in unstressed conditions protective genes and molecules are repressed by PARP inhibition. The reduced anthocyanin production was shown to be based on the repression of transcription of key regulatory and biosynthesis genes. PARP is a key factor for understanding growth and stress responses of plants. PARP inhibition allows plants to reduce protection such as anthocyanin, ascorbate or Non-Photochemical-Quenching whilst maintaining high energy levels likely enabling the observed enhancement of biomass production under stress, opening interesting perspectives for increasing crop productivity
- …