1,259 research outputs found

    On the Erasure and Regeneration of the Primordial Baryon Asymmetry by Sphalerons

    Full text link
    We show that a cosmological baryon asymmetry generated at the GUT scale, which would be destroyed at lower temperatures by sphalerons and possible new B- or L-violating effects, can naturally be preserved by an asymmetry in the number of right-handed electrons. This results in a significant softening of previously derived baryogenesis-based constraints on the strength of exotic B- or L-violating interactions.Comment: 10 pp. LaTex (2 figures, included) UMN-TH-1201/9

    Formation of superdense hadronic matter in high energy heavy-ion collisions

    Get PDF
    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. We then show that in central collisions there exists a large volume of sufficiently long-lived superdense hadronic matter whose local baryon and energy densities exceed the critical densities for the hadronic matter to quark-gluon plasma transition. The size and lifetime of this matter are found to depend strongly on the equation of state. We also investigate the degree and time scale of thermalization as well as the radial flow during the expansion of the superdense hadronic matter. The flow velocity profile and the temperature of the hadronic matter at freeze-out are extracted. The transverse momentum and rapidity distributions of protons, pions and kaons calculated with and without the mean field are compared with each other and also with the preliminary data from the E866/E802 collaboration to search for experimental observables that are sensitive to the equation of state. It is found that these inclusive, single particle observables depend weakly on the equation of state. The difference between results obtained with and without the nuclear mean field is only about 20\%. The baryon transverse collective flow in the reaction plane is also analyzed. It is shown that both the flow parameter and the strength of the ``bounce-off'' effect are very sensitive to the equation of state. In particular, a soft equation of state with a compressibility of 200 MeV results in an increase of the flow parameter by a factor of 2.5 compared to the cascade case without the mean field. This large effect makes it possible to distinguish the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques

    Gluino Pair Production at Linear e^+e^- Colliders

    Get PDF
    We study the potential of high-energy linear e+e−e^+e^- colliders for the production of gluino pairs within the Minimal Supersymmetric Standard Model (MSSM). In this model, the process e+e−→g~g~e^+e^-\to\tilde{g}\tilde{g} is mediated by quark/squark loops, dominantly of the third generation, where the mixing of left- and right-handed states can become large. Taking into account realistic beam polarization effects, photon and Z0Z^0-boson exchange, and current mass exclusion limits, we scan the MSSM parameter space for various e+e−e^+e^- center-of-mass energies to determine the regions, where gluino production should be visible.Comment: 22 pages, 9 figure

    Soil and Nutrient Losses from Small Sprinkler and Furrow Irrigated Watersheds in Southern Idaho

    Get PDF
    Sediment and associated nutrients flowing to the Snake River with furrow irrigation runoff and unused irrigation water have been a concern in the Twin Falls irrigation tract in southern Idaho. Converting furrow irrigated fields to sprinkler irrigation is one practice that has been promoted, and received financial assistance, to reduce sediment loss. Five small watersheds (330 to 1480 acres) with 10 to 70% sprinkler irrigation were monitored from 2005 to 2008 to determine if converting to sprinkler irrigation reduced sediment and nutrient losses from these watersheds. Eliminating runoff from furrow irrigated fields by converting to sprinkler irrigation will reduce sediment and nutrient losses from fields. However, there were no significant correlations between the amount of sprinkler irrigation and the sediment or nutrient loads from these watersheds. Potential reasons for these results are the flow rate allocation system used by the TFCC, the amount and location of furrow irrigated fields in each watershed, and the management of furrow irrigated fields within each watershed. One significant correlation was decreasing dissolved phosphorus concentrations as relative amount of sprinkler irrigated land increased, presumably because less water flowed across fields in furrows as sprinkler irrigated area increased. A water quality model for irrigated watersheds is needed for more thorough assessment of the variety conditions and management practices within these watersheds

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    Observation of Target Electron Momentum Effects in Single-Arm M\o ller Polarimetry

    Full text link
    In 1992, L.G. Levchuk noted that the asymmetries measured in M\o ller scattering polarimeters could be significantly affected by the intrinsic momenta of the target electrons. This effect is largest in devices with very small acceptance or very high resolution in laboratory scattering angle. We use a high resolution polarimeter in the linac of the polarized SLAC Linear Collider to study this effect. We observe that the inclusion of the effect alters the measured beam polarization by -14% of itself and produces a result that is consistent with measurements from a Compton polarimeter. Additionally, the inclusion of the effect is necessary to correctly simulate the observed shape of the two-body elastic scattering peak.Comment: 29 pages, uuencoded gzip-compressed postscript (351 kb). Uncompressed postscript file (898 kb) available to DECNET users as SLC::USER_DISK_SLC1:[MORRIS]levpre.p

    Z decays into light gluinos: a calculation based on unitarity

    Full text link
    The Z boson can decay to a pair of light gluinos through loop-mediated processes. Based on unitarity of the S-matrix, the imaginary part of the decay amplitude is computed in the presence of a light bottom squark. This imaginary part can provide useful information on the full amplitude. Implications are discussed for a recently proposed light gluino and light bottom squark scenario.Comment: 19 pages, LaTeX, 3 figures, submitted to Phys. Rev.

    Can multi-TeV (top and other) squarks be natural in gauge mediation?

    Full text link
    We investigate whether multi-TeV (1-3 TeV) squarks can be natural in models of gauge mediated SUSY breaking. The idea is that for some boundary condition of the scalar (Higgs and stop) masses, the Higgs (mass)2^2, evaluated at the renormalization scale ∌O(100)\sim O(100) GeV, is not very sensitive to (boundary values of) the scalar masses (this has been called ``focussing'' in recent literature). Then, the stop masses can be multi-TeV without leading to fine-tuning in electroweak symmetry breaking. {\em Minimal} gauge mediation does {\em not} lead to this focussing (for all values of tan⁥ÎČ\tan \beta and the messenger scale): the (boundary value of) the Higgs mass is too small compared to the stop masses. Also, in minimal gauge mediation, the gaugino masses are of the same order as the scalar masses so that multi-TeV scalars implies multi-TeV gauginos (especially gluino) leading to fine-tuning. We discuss ideas to {\em increase} the Higgs mass relative to the stop masses (so that focussing can be achieved) and also to {\em suppress} gaugino masses relative to scalar masses (or to modify the gaugino mass relations) in {\em non-minimal} models of gauge mediation -- then multi-TeV (top and other) squarks can be natural. Specific models of gauge mediation which incorporate these ideas and thus have squarks (and in some cases, the gluino) heavier than a TeV without resulting in fine-tuning are also studied and their collider signals are contrasted with those of other models which have multi-TeV squarks.Comment: LaTeX, 29 pages, 9 eps figures. Replacing an earlier version. In version 3, some references and a minor comment have been added and typos have been correcte

    Constraints on Baryon-Nonconserving Yukawa Couplings in a Supersymmetric Theory

    Get PDF
    The 1-loop evolution of couplings in the minimal supersymmetric standard model, extended to include baryon nonconserving (B ⁣ ⁣ ⁣/)(B\!\!\!/) operators through explicit RR-parity violation, is considered keeping only B ⁣ ⁣ ⁣/B\!\!\!/ superpotential terms involving the maximum possible number of third generation superfields. If all retained Yukawa couplings YiY_i are required to remain in the perturbative domain (Yi<1)(Y_i < 1) upto the scale of gauge group unification, upper bounds ensue on the magnitudes of the B ⁣ ⁣ ⁣/B\!\!\!/ coupling strengths at the supersymmetry breaking scale, independent of the model of unification. They turn out to be similar to the corresponding fixed point values reached from a wide range of YiY_i (including all YiY_i greater than unity) at the unification scale. The coupled evolution of the top and B ⁣ ⁣ ⁣/B\!\!\!/ Yukawa couplings results in a reduction of the fixed point value of the former.Comment: PRL-TH-94/8 and TIFR/TH/94-7, 15 pages, LaTe

    Dark Matter in the Singlet Extension of MSSM: Explanation of Pamela and Implication on Higgs Phenomenology

    Full text link
    As discussed recently by Hooper and Tait, the singlino-like dark matter in the Minimal Supersymmetric Standard Model (MSSM) extended by a singlet Higgs superfield can give a perfect explanation for both the relic density and the Pamela result through the Sommerfeld-enhanced annihilation into singlet Higgs bosons (aa or hh followed by h−>aah->a a) with aa being light enough to decay dominantly to muons or electrons. In this work we analyze the parameter space required by such a dark matter explanation and also consider the constraints from the LEP experiments. We find that although the light singlet Higgs bosons have small mixings with the Higgs doublets in the allowed parameter space, their couplings with the SM-like Higgs boson hSMh_{SM} (the lightest doublet-dominant Higgs boson) can be enhanced by the soft parameter AÎșA_\kappa and, in order to meet the stringent LEP constraints, the hSMh_{SM} tends to decay into the singlet Higgs pairs aaaa or hhhh instead of bbˉb\bar b. So the hSMh_{SM} produced at the LHC will give a multi-muon signal, h_{SM} -> aa -> 4 muons or h_{SM} -> hh -> 4 a -> 8 muons.Comment: Version in JHE
    • 

    corecore