176 research outputs found

    Provisional atlas of British spiders (Arachnida, Araneae), Volume 1

    Get PDF

    Characterization of the cytosolic tuberin-hamartin complex. Tuberin is a cytosolic chaperone for hamartin

    Get PDF
    Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction and dermatological abnormalities. Mutations to either the TSC1 or TSC2 gene are responsible for the disease. The TSC1 gene encodes hamartin, a 130-kDa protein without significant homology to other known mammalian proteins. Analysis of the amino acid sequence of tuberin, the 200-kDa product of the TSC2 gene, identified a region with limited homology to GTPase-activating proteins. Previously, we demonstrated direct binding between tuberin and hamartin. Here we investigate this interaction in more detail. We show that the complex is predominantly cytosolic and may contain additional, as yet uncharacterized components alongside tuberin and hamartin. Furthermore, because oligomerization of the hamartin carboxyl-terminal coiled coil domain was inhibited by the presence of tuberin, we propose that tuberin acts as a chaperone, preventing hamartin self-aggregation

    Identification of a region required for TSC1 stability by functional analysis of TSC1 missense mutations found in individuals with tuberous sclerosis complex

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterised by the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene on chromosome 9q34, or the TSC2 gene on chromosome 16p13.3. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR). Recently it has been shown that missense mutations to the TSC1 gene can cause TSC. Methods: We have used in vitro biochemical assays to investigate the effects on TSC1 function of TSC1 missense variants submitted to the Leiden Open Variation Database. Results: We identified specific substitutions between amino acids 50 and 190 in the N-terminal region of TSC1 that result in reduced steady state levels of the protein and lead to increased mTOR signalling. Conclusion: Our results suggest that amino acid residues within the N-terminal region of TSC1 are important for TSC1 function and for maintaining the activity of the TSC1-TSC2 complex

    Identification of regions critical for the integrity of the TSC1-TSC2-TBC1D7 complex

    Get PDF
    The TSC1-TSC2-TBC1D7 complex is an important negative regulator of the mechanistic target of rapamycin complex 1 that controls cell growth in response to environmental cues. Inactivating TSC1 and TSC2 mutations cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterised by the occurrence of benign tumours in various organs and tissues, notably the brain, skin and kidneys. TBC1D7 mutations have not been reported in TSC patients but homozygous inactivation of TBC1D7 causes megaencephaly and intellectual disability. Here, using an exon-specific deletion strategy, we demonstrate that some regions of TSC1 are not necessary for the core function of the TSC1-TSC2 complex. Furthermore, we show that the TBC1D7 binding site is encoded by TSC1 exon 22 and identify amino acid residues involved in the TSC1-TBC1D7 interaction

    Interdependence of clinical factors predicting cognition in children with tuberous sclerosis complex

    Get PDF
    Cognitive development in patients with tuberous sclerosis complex is highly variable. Predictors in the infant years would be valuable to counsel parents and to support development. The aim of this study was to confirm factors that have been reported to be independently correlated with cognitive development. 102 patients included in this study were treated at the ENCORE-TSC expertise center of the Erasmus Medical Center-Sophia Children’s Hospital. Data from the first 24 months of life were used, including details on epilepsy, motor development and mutation status. Outcome was defined as cognitive development (intellectual equivalent, IE) as measured using tests appropriate to the patients age and cognitive abilities (median age at testing 8.2 years, IQR 4.7–12.0). Univariable and multivariable regression analyses were used. In a univariable analysis, predictors of lower IE were: the presence of infantile spasms (β = −18.3, p = 0.000), a larger number of antiepileptic drugs used (β = −6.3, p = 0.000), vigabatrin not used as first drug (β = −14.6, p = 0.020), corticosteroid treatment (β = −33.2, p = 0.005), and a later age at which the child could walk independently (β = −2.1, p = 0.000). An older age at seizure onset predicted higher IE (β = 1.7, p = 0.000). In a multivariable analysis, only age at seizure onset was significantly correlated to IE (β = 1.2, p = 0.005), contributing to 28% of the variation in IE. In our cohort, age at seizure onset was the only variable that independently predicted IE. Factors predicting cognitive development could aid parents and physicians in finding the appropriate support and schooling for these patients
    • …
    corecore