12 research outputs found

    Adipose stem cell-derived extracellular matrix – comparative characterization and evaluation as a biomaterial

    Get PDF
    The extracellular matrix (ECM) is the non-cellular part of tissues and represents the natural environment of the cells. Next to structural stability, it provides various physical, chemical, and mechanical cues that strongly regulate and influence cellular behavior and are required for tissue morphogenesis, differentiation, and homeostasis. Due to its promising characteristics, ECM is used in a wide range of tissue engineering and regenerative medicine approaches as a biomaterial for coatings and scaffolds. To date, there are two sources for ECM material. First, native ECM is generated by the removal of the residing cells of a tissue or organ (decellularized ECM; dECM). Secondly, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. Although both types of ECM were intensively used for tissue engineering and regenerative medicine approaches, studies directly characterizing and comparing them are rare. Hence, in the first part of this thesis, dECM from adipose tissue and cdECM from stem cells and adipogenic differentiated stem cells from adipose tissue (ASCs) were characterized towards their macromolecular composition, structural features, and biological purity. The dECM was found to exhibit higher levels of collagens and lower levels of sulfated glycosaminoglycans compared to cdECMs. Structural characteristics revealed an immature state of collagen fibers in cdECM samples. The obtained results revealed differences between the two ECMs that can relevantly impact cellular behavior and subsequently experimental outcome and should therefore be considered when choosing a biomaterial for a specific application. The establishment of a functional vascular system in tissue constructs to realize an adequate nutrient supply remains challenging. In the second part, the supporting effect of cdECM on the self‐assembled formation of prevascular‐like structures by microvascular endothelial cells (mvECs) was investigated. It could be observed that cdECM, especially adipogenic differentiated cdECM, enhanced the formation of prevascular-like structures. An increased concentration of proangiogenic factors was found in cdECM substrates. The demonstration of cdECMs capability to induce the spontaneous formation of prevascular‐like structures by mvECs highlights cdECM as a promising biomaterial for adipose tissue engineering. Depending on the purpose of the ECM material chemical modification might be necessary. In the third and last part, the chemical functionalization of cdECM with dienophiles (terminal alkenes, cyclopropene) by metabolic glycoengineering (MGE) was demonstrated. MGE allows the chemical functionalization of cdECM via the natural metabolism of the cells and without affecting the chemical integrity of the cdECM. The incorporated dienophile chemical groups can be specifically addressed via catalysts-free, cell-friendly inverse electron-demand Diels‐Alder reaction. Using this system, the successful modification of cdECM from ASCs with an active enzyme could be shown. The possibility to modify cdECM via a cell-friendly chemical reaction opens up a wide range of possibilities to improve cdECM depending on the purpose of the material. Altogether, this thesis highlighted the differences between adipose dECM and cdECM from ASCs and demonstrated cdECM as a promising alternative to native dECM for application in tissue engineering and regenerative medicine approaches

    Adipose stem cell-derived extracellular matrix – comparative characterization and evaluation as a biomaterial

    No full text
    The extracellular matrix (ECM) is the non-cellular part of tissues and represents the natural environment of the cells. Next to structural stability, it provides various physical, chemical, and mechanical cues that strongly regulate and influence cellular behavior and are required for tissue morphogenesis, differentiation, and homeostasis. Due to its promising characteristics, ECM is used in a wide range of tissue engineering and regenerative medicine approaches as a biomaterial for coatings and scaffolds. To date, there are two sources for ECM material. First, native ECM is generated by the removal of the residing cells of a tissue or organ (decellularized ECM; dECM). Secondly, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. Although both types of ECM were intensively used for tissue engineering and regenerative medicine approaches, studies directly characterizing and comparing them are rare. Hence, in the first part of this thesis, dECM from adipose tissue and cdECM from stem cells and adipogenic differentiated stem cells from adipose tissue (ASCs) were characterized towards their macromolecular composition, structural features, and biological purity. The dECM was found to exhibit higher levels of collagens and lower levels of sulfated glycosaminoglycans compared to cdECMs. Structural characteristics revealed an immature state of collagen fibers in cdECM samples. The obtained results revealed differences between the two ECMs that can relevantly impact cellular behavior and subsequently experimental outcome and should therefore be considered when choosing a biomaterial for a specific application. The establishment of a functional vascular system in tissue constructs to realize an adequate nutrient supply remains challenging. In the second part, the supporting effect of cdECM on the self‐assembled formation of prevascular‐like structures by microvascular endothelial cells (mvECs) was investigated. It could be observed that cdECM, especially adipogenic differentiated cdECM, enhanced the formation of prevascular-like structures. An increased concentration of proangiogenic factors was found in cdECM substrates. The demonstration of cdECMs capability to induce the spontaneous formation of prevascular‐like structures by mvECs highlights cdECM as a promising biomaterial for adipose tissue engineering. Depending on the purpose of the ECM material chemical modification might be necessary. In the third and last part, the chemical functionalization of cdECM with dienophiles (terminal alkenes, cyclopropene) by metabolic glycoengineering (MGE) was demonstrated. MGE allows the chemical functionalization of cdECM via the natural metabolism of the cells and without affecting the chemical integrity of the cdECM. The incorporated dienophile chemical groups can be specifically addressed via catalysts-free, cell-friendly inverse electron-demand Diels‐Alder reaction. Using this system, the successful modification of cdECM from ASCs with an active enzyme could be shown. The possibility to modify cdECM via a cell-friendly chemical reaction opens up a wide range of possibilities to improve cdECM depending on the purpose of the material. Altogether, this thesis highlighted the differences between adipose dECM and cdECM from ASCs and demonstrated cdECM as a promising alternative to native dECM for application in tissue engineering and regenerative medicine approaches

    How mechanical and physicochemical material characteristics influence adipose-derived stem cell fate

    No full text
    Adipose-derived stem cells (ASCs) are a subpopulation of mesenchymal stem cells. Compared to bone marrow-derived stem cells, they can be harvested with minimal invasiveness. ASCs can be easily expanded and were shown to be able to differentiate into several clinically relevant cell types. Therefore, this cell type represents a promising component in various tissue engineering and medical approaches (e.g., cell therapy). In vivo cells are surrounded by the extracellular matrix (ECM) that provides a wide range of tissue-specific physical and chemical cues, such as stiffness, topography, and chemical composition. Cells can sense the characteristics of their ECM and respond to them in a specific cellular behavior (e.g., proliferation or differentiation). Thus, in vitro biomaterial properties represent an important tool to control ASCs behavior. In this review, we give an overview of the current research in the mechanosensing of ASCs and current studies investigating the impact of material stiffens, topography, and chemical modification on ASC behavior. Additionally, we outline the use of natural ECM as a biomaterial and its interaction with ASCs regarding cellular behavior

    How Mechanical and Physicochemical Material Characteristics Influence Adipose-Derived Stem Cell Fate

    No full text
    Adipose-derived stem cells (ASCs) are a subpopulation of mesenchymal stem cells. Compared to bone marrow-derived stem cells, they can be harvested with minimal invasiveness. ASCs can be easily expanded and were shown to be able to differentiate into several clinically relevant cell types. Therefore, this cell type represents a promising component in various tissue engineering and medical approaches (e.g., cell therapy). In vivo cells are surrounded by the extracellular matrix (ECM) that provides a wide range of tissue-specific physical and chemical cues, such as stiffness, topography, and chemical composition. Cells can sense the characteristics of their ECM and respond to them in a specific cellular behavior (e.g., proliferation or differentiation). Thus, in vitro biomaterial properties represent an important tool to control ASCs behavior. In this review, we give an overview of the current research in the mechanosensing of ASCs and current studies investigating the impact of material stiffens, topography, and chemical modification on ASC behavior. Additionally, we outline the use of natural ECM as a biomaterial and its interaction with ASCs regarding cellular behavior

    Defined adipocyte differentiation and long term stability through a cellulose-based culture matrix

    No full text
    White adipose tissue (WAT) comprises about one fourth of the human body, interacts with many other organs via paracrine and endocrine signals and sequestrates lipophilic substances. Thereby it impacts distribution and levels of drugs [1]. Additionally WAT is the origin of different diseases and thus target of several drugs addressing those [2]. Therefore an adipose tissue testsystem is highly needed to analyze fundamental biological issues in physiological or diseased state, screen for potential drugs or create affiliated safety profiles. Additionally adipose tissue substitutes are highly desired to treat lost, deformed or burned subcutaneous fatty tissue [3]. In several promising attempts substantial progress was achieved e.g. by the encapsulation of adipocytes in a 3D environment with native matrix components like gelatine [4] or the optimization of media composition [5]. However, regardless of its potential in vivo or in vitro application, an adipose tissue model has to fulfill two main requirements which could not be implemented so far. First, the model has to show in vitro stability for a period of several weeks to enable its maturation and time-dependent investigations. Second, culture conditions have to be free of animal derived components or preferably completely defined to exclude possible impairments through unknown constituents and allow for GMP-compliant production. In this approach a novel cellulose based matrix and a specific media supplementation are combined to achieve defined adipocyte differentiation and long term maintenance. Human primary adipose-derived stem cells (ASCs) were isolated, characterized and expanded xenofree. ASCs were next to tissue culture polystyrol applied to a collagen coated surface and the cellulose-based matrix. Adipogenic differentiation of ASCs was induced by addition of a composed defined differentiation medium and continued for 14 days. On day 14 medium was switched to a composed defined adipocyte maintenance medium. Obtained adipocytes were subsequently cultured for additional 28 days. Preservation of adipocyte characteristics were evaluated by immunofluorescence staining of specific markers like perilipin A and the quantitative analysis of stored lipids. Retained adipocyte metabolism was determined by released leptin, lipolysis by released glycerol levels. Our results classify the cellulose-based matrix as a useful tool to realize and optimize defined adipogenic differentiation of ASCs and the subsequent adipocyte maintenance. The matrix constitution enables strong cell matrix interaction and thereby strengthens cell adherence which is often diminished under defined culture conditions. Due to matrix-induced cell quiescence adipocytes’ long-term stability was enhanced. Based on matrix-derived support successful differentiation and maintenance were confirmed via the composed media under completely defined conditions. Therefore the cellulose-based matrix is a promising biomaterial for stable long-term culture of quiescent cells with preservation of cell specific functions and characteristics which could as well be applied in other setups. Consecutive defined adipose tissue models could be further expanded e.g. to co-culture models and used as testsystems or tissue substitutes

    Generation of an azide-modified extracellular matrix by adipose-derived stem cells using metabolic glycoengineering

    Get PDF
    Natural extracellular matrix (ECM) represents an ideal biomaterial for tissue engineering and regenerative medicine approaches. For further functionalization, there is a need for specific addressable functional groups within this biomaterial. Metabolic glycoengineering (MGE) provides a technique to incorporate modified monosaccharide derivatives into the ECM during their assembly, which was shown by us earlier for the production of a modified fibroblast-derived dermal ECM

    Cell-derived extracellular matrix as maintaining biomaterial for adipogenic differentiation

    No full text
    The extracellular matrix (ECM) naturally surrounds cells in humans, and therefore represents the ideal biomaterial for tissue engineering. ECM from different tissues exhibit different composition and physical characteristics. Thus, ECM provides not only physical support but also contains crucial biochemical signals that influence cell adhesion, morphology, proliferation and differentiation. Next to native ECM from mature tissue, ECM can also be obtained from the in vitro culture of cells. In this study, we aimed to highlight the supporting effect of cell-derived- ECM (cdECM) on adipogenic differentiation. ASCs were seeded on top of cdECM from ASCs (scdECM) or pre-adipocytes (acdECM). The impact of ECM on cellular activity was determined by LDH assay, WST I assay and BrdU assay. A supporting effect of cdECM substrates on adipogenic differentiation was determined by oil red O staining and subsequent quantification. Results revealed no effect of cdECM substrates on cellular activity. Regarding adipogenic differentiation a supporting effect of cdECM substrates was obtained compared to control. With these results, we confirm cdECM as a promising biomaterial for adipose tissue engineering

    Gellan gum is a suitable biomaterial for manual and bioprinted setup of long-term stable, functional 3D-adipose tissue models

    No full text
    Due to its wide-ranging endocrine functions, adipose tissue influences the whole body’s metabolism. Engineering long-term stable and functional human adipose tissue is still challenging due to the limited availability of suitable biomaterials and adequate cell maturation. We used gellan gum (GG) to create manual and bioprinted adipose tissue models because of its similarities to the native extracellular matrix and its easily tunable properties. Gellan gum itself was neither toxic nor monocyte activating. The resulting hydrogels exhibited suitable viscoelastic properties for soft tissues and were stable for 98 days in vitro. Encapsulated human primary adipose-derived stem cells (ASCs) were adipogenically differentiated for 14 days and matured for an additional 84 days. Live-dead staining showed that encapsulated cells stayed viable until day 98, while intracellular lipid staining showed an increase over time and a differentiation rate of 76% between days 28 and 56. After 4 weeks of culture, adipocytes had a univacuolar morphology, expressed perilipin A, and secreted up to 73% more leptin. After bioprinting establishment, we demonstrated that the cells in printed hydrogels had high cell viability and exhibited an adipogenic phenotype and function. In summary, GG-based adipose tissue models show long-term stability and allow ASCs maturation into functional, univacuolar adipocytes

    Adipose stem cell-derived extracellular matrix represents a promising biomaterial by inducing spontaneous formation of prevascular-like structures by mvECs

    No full text
    Tissue constructs of physiologically relevant scale require a vascular system to maintain cell viability. However, in vitro vascularization of engineered tissues is still a major challenge. Successful approaches are based on a feeder layer (FL) to support vascularization. Here, we investigated whether the supporting effect on the self‐assembled formation of prevascular‐like structures by microvascular endothelial cells (mvECs) originates from the FL itself or from its extracellular matrix (ECM). Therefore, we compared the influence of ECM, either derived from adipose‐derived stem cells (ASCs) or adipogenically differentiated ASCs, with the classical cell‐based FL. All cell‐derived ECM (cdECM) substrates enabled mvEC growth with high viability. Prevascular‐like structures were visualized by immunofluorescence staining of endothelial surface protein CD31 and could be observed on all cdECM and FL substrates but not on control substrate collagen I. On adipogenically differentiated ECM, longer and higher branched structures could be found compared with stem cell cdECM. An increased concentration of proangiogenic factors was found in cdECM substrates and FL approaches compared with controls. Finally, the expression of proteins associated with tube formation (E‐selectin and thrombomodulin) was confirmed. These results highlight cdECM as promising biomaterial for adipose tissue engineering by inducing the spontaneous formation of prevascular‐like structures by mvECs

    An Advanced 'clickECM' that Can be Modified by the Inverse-Electron Demand Diels-Alder Reaction

    No full text
    The extracellular matrix (ECM) represents the natural environment of the cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017 , 52 , 159-170), we demonstrated the modification of an ECM with azido groups which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene) which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove the functional groups itself not to influence cellular behavior. Thus, this new material has great potential for its use as biomaterial which can be individually modified in a wide range of applications.publishe
    corecore