23 research outputs found

    Self-consistent predictions for LIER-like emission lines from post-AGB stars

    Full text link
    Early type galaxies (ETGs) frequently show emission from warm ionized gas. These Low Ionization Emission Regions (LIERs) were originally attributed to a central, low-luminosity active galactic nuclei. However, the recent discovery of spatially-extended LIER emission suggests ionization by both a central source and an extended component that follows a stellar-like radial distribution. For passively-evolving galaxies with old stellar populations, hot post-Asymptotic Giant Branch (AGB) stars are the only viable extended source of ionizing photons. In this work, we present the first prediction of LIER-like emission from post-AGB stars that is based on fully self-consistent stellar evolution and photoionization models. We show that models where post-AGB stars are the dominant source of ionizing photons reproduce the nebular emission signatures observed in ETGs, including LIER-like emission line ratios in standard optical diagnostic diagrams and Hα\alpha equivalent widths of order 0.1-3 angstroms. We test the sensitivity of LIER-like emission to the details of post-AGB models, including the mass loss efficiency and convective mixing efficiency, and show that line strengths are relatively insensitive to post-AGB timescale variations. Finally, we examine the UV-optical colors of the models and the stellar populations responsible for the UV-excess observed in some ETGs. We find that allowing as little as 3% of the HB population to be uniformly distributed to very hot temperatures (30,000 K) produces realistic UV colors for old, quiescent ETGs.Comment: ApJ accepted. 20 pages, 8 figure

    Physical Properties of II Zw 40's Super Star Cluster and Nebula: New Insights and Puzzles from UV Spectroscopy

    Get PDF
    We analyze far-ultraviolet spectra and ancillary data of the super star cluster SSC-N and its surrounding H II region in the nearby dwarf galaxy II Zw 40. From the ultraviolet spectrum, we derive a low internal reddening of E(B-V) = 0.07 +/- 0.03, a mass of (9.1 +/- 1.0) x 10^5 Lsol, a bolometric luminosity of (1.1 +/- 0.1) x 10^9 Lsol, a number of ionizing photons of (6 +/- 2) x 10^52 s^-1, and an age of (2.8 +/- 0.1) Myr. These parameters agree with the values derived from optical and radio data, indicating no significant obscured star formation, absorption of photons by dust, or photon leakage. SSC-N and its nebulosity are an order of magnitude more massive and luminous than 30 Doradus and its ionizing cluster. Photoionization modeling suggests a high ionization parameter and a C/O ratio where C is between primary and secondary. We calculate diagnostic emission-line ratios and compare SSC-N to local star-forming galaxies. The SSC-N nebula does not coincide with the locus defined by local galaxies. Rather, it coincides with the location of "Green Pea" galaxies, objects which are often considered nearby analogs of the galaxies reionizing the universe. Most stellar features are well-reproduced by synthetic spectra. However, the SSC-N cluster has strong, broad, stellar He II 1640 emission that cannot be reproduced, suggesting a deficit of He-enhanced stars with massive winds in the models. We discuss possible sources for the broad He II emission, including very massive stars and/or enhanced mixing processes.Comment: The Astrophysical Journal, accepte

    Comparison of Theoretical Starburst Photoionisation Models for Optical Diagnostics

    Get PDF
    We study and compare different examples of stellar evolutionary synthesis input parameters used to produce photoionisation model grids using the MAPPINGS V modelling code. The aim of this study is to (a) explore the systematic effects of various stellar evolutionary synthesis model parameters on the interpretation of emission lines in optical strong-line diagnostic diagrams, (b) characterise the combination of parameters able to reproduce the spread of local galaxies located in the star-forming region in the Sloan Digital Sky Survey, and (c) investigate the emission from extremely metal-poor galaxies using photoionisation models. We explore and compare the stellar input ionising spectrum (stellar population synthesis code [Starburst99, SLUG, BPASS], stellar evolutionary tracks, stellar atmospheres, star-formation history, sampling of the initial mass function) as well as parameters intrinsic to the H II region (metallicity, ionisation parameter, pressure, H II region boundedness). We also perform a comparison of the photoionisation codes MAPPINGS and CLOUDY. On the variations in the ionising spectrum model parameters, we find that the differences in strong emission-line ratios between varying models for a given input model parameter are small, on average ~0.1 dex. An average difference of ~0.1 dex in emission-line ratio is also found between models produced with MAPPINGS and CLOUDY. Large differences between the emission-line ratios are found when comparing intrinsic H II region parameters. We find that low-metallicity galaxies are better explained by a density-bounded H II region and higher pressures better encompass the spread of galaxies at high redshift.Comment: 33 pages, 26 figures, accepted for publication in Ap

    Physical Properties of II Zw 40's Super Star Cluster and Nebula: New Insights and Puzzles from UV Spectroscopy

    Get PDF
    We analyze far-ultraviolet spectra and ancillary data of the super star cluster SSC-N and its surrounding H ii region in the nearby dwarf galaxy II Zw 40. From the ultraviolet spectrum, we derive a low internal reddening of E(B − V) = 0.07 ± 0.03, a mass of (9.1 ± 1.0) × 10^5 M_⊙, a bolometric luminosity of (1.1 ± 0.1) × 10^9 L_⊙, a number of ionizing photons of (6 ± 2) × 10^(52) s^(−1), and an age of (2.8 ± 0.1) Myr. These parameters agree with the values derived from optical and radio data, indicating no significant obscured star formation, absorption of photons by dust, or photon leakage. SSC-N and its nebulosity are an order of magnitude more massive and luminous than 30 Doradus and its ionizing cluster. Photoionization modeling suggests a high ionization parameter and a C/O ratio where C is between primary and secondary. We calculate diagnostic emission-line ratios and compare SSC-N to local star-forming galaxies. The SSC-N nebula does not coincide with the locus defined by local galaxies. Rather, it coincides with the location of "Green Pea" galaxies, objects that are often considered nearby analogs of the galaxies reionizing the universe. Most stellar features are well reproduced by synthetic spectra. However, the SSC-N cluster has strong, broad, stellar He ii λ1640 emission that cannot be reproduced, suggesting a deficit of He-enhanced stars with massive winds in the models. We discuss possible sources for the broad He ii emission, including very massive stars and/or enhanced mixing processes

    A Comparison of UV and Optical Metallicities in Star-forming Galaxies

    Get PDF
    Our ability to study the properties of the interstellar medium in the earliest galaxies will rely on emission-line diagnostics at rest-frame ultraviolet (UV) wavelengths. In this work, we identify metallicity-sensitive diagnostics using UV emission lines. We compare UV-derived metallicities with standard, well-established optical metallicities using a sample of galaxies with rest-frame UV and optical spectroscopy. We find that the He2-O3C3 diagnostic (He II λ1640 Å/C III] λ1906,1909 Å versus [O III] λ1666 Å/C III] λ1906,9 Å) is a reliable metallicity tracer, particularly at low metallicity (12 log O H 8 + 10( ), where stellar contributions are minimal. We find that the Si3-O3C3 diagnostic ([Si III] λ1883 Å/C III] λ1906 Å versus [O III] λ1666 Å/C III] λ1906,9 Å) is a reliable metallicity tracer, though with large scatter (0.2-0.3 dex), which we suggest is driven by variations in gas-phase abundances. We find that the C4-O3C3 diagnostic (C IV λ 1548,50 Å/[O III] λ 1666 Å versus [O III] λ 1666 Å/C III] λ 1906,9 Å) correlates poorly with optically derived metallicities. We discuss possible explanations for these discrepant metallicity determinations, including the hardness of the ionizing spectrum, contribution from stellar wind emission, and non-solar-scaled gas-phase abundances. Finally, we provide two new UV oxygen abundance diagnostics, calculated from polynomial fits to the model grid surface in the He2-O3C3 and Si3-O3C3 diagrams

    The BPT Diagram in Cosmological Galaxy Formation Simulations: Understanding the Physics Driving Offsets at High Redshift

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society This work is licenced under Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/The Baldwin, Philips, & Terlevich diagram of [O iii]/Hβ versus [N ii]/Hα (hereafter N2-BPT) has long been used as a tool for classifying galaxies based on the dominant source of ionizing radiation. Recent observations have demonstrated that galaxies at z ∼ 2 reside offset from local galaxies in the N2-BPT space. In this paper, we conduct a series of controlled numerical experiments to understand the potential physical processes driving this offset. We model nebular line emission in a large sample of galaxies, taken from the simba cosmological hydrodynamic galaxy formation simulation, using the cloudy photoionization code to compute the nebular line luminosities from H ii regions. We find that the observed shift toward higher [O iii]/Hβ and [N ii]/Hα values at high redshift arises from sample selection: when we consider only the most massive galaxies M * ∼ 1010–11 M ⊙, the offset naturally appears, due to their high metallicities. We predict that deeper observations that probe lower-mass galaxies will reveal galaxies that lie on a locus comparable to z ∼ 0 observations. Even when accounting for samples-selection effects, we find that there is a subtle mismatch between simulations and observations. To resolve this discrepancy, we investigate the impact of varying ionization parameters, H ii region densities, gas-phase abundance patterns, and increasing radiation field hardness on N2-BPT diagrams. We find that either decreasing the ionization parameter or increasing the N/O ratio of galaxies at fixed O/H can move galaxies along a self-similar arc in N2-BPT space that is occupied by high-redshift galaxies.Peer reviewedFinal Published versio

    Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA\u27s key science goals and present prototype observations to demonstrate MaNGA\u27s scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12\u27\u27 (19 fibers) to 32\u27\u27 (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2\u27\u27 fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * ≳ 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA\u27s ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA\u27s spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr
    corecore