38 research outputs found

    Multicomponent theory of buoyancy instabilities in magnetized plasmas: The case of magnetic field parallel to gravity

    Full text link
    We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the multicomponent plasma approach when the momentum equations are solved for each species. We consider a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. The nonzero background electron thermal flux is taken into account. Collisions between electrons and ions are included in the momentum equations. No simplifications usual for the one-fluid MHD-approach in studying these instabilities are used. We derive a simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability for the geometry under consideration. This result contradicts to conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. Our dispersion relation also shows that the medium with the electron thermal flux can be unstable, if the temperature gradients of ions and electrons have the opposite signs. The results obtained can be applied to the weakly collisional magnetized plasma objects in laboratory and astrophysics.Comment: Accepted for publication in Astrophysics & Space Scienc

    Moduli Spaces of Instantons on the Taub-NUT Space

    Full text link
    We present ADHM-Nahm data for instantons on the Taub-NUT space and encode these data in terms of Bow Diagrams. We study the moduli spaces of the instantons and present these spaces as finite hyperkahler quotients. As an example, we find an explicit expression for the metric on the moduli space of one SU(2) instanton. We motivate our construction by identifying a corresponding string theory brane configuration. By following string theory dualities we are led to supersymmetric gauge theories with impurities.Comment: 26 pages, 7 figure

    Instantons in N=2 magnetized D-brane worlds

    Get PDF
    In a toroidal orbifold of type IIB string theory we study instanton effects in N=2 super Yang-Mills theories engineered with systems of wrapped magnetized D9 branes and Euclidean D5 branes. We analyze the various open string sectors in this brane system and study the 1-loop amplitudes described by annulus diagrams with mixed boundary conditions, explaining their role in the stringy instanton calculus. We show in particular that the non-holomorphic terms in these annulus amplitudes precisely reconstruct the appropriate Kahler metric factors that are needed to write the instanton correlators in terms of purely holomorphic variables. We also explicitly derive the correct holomorphic structure of the instanton induced low energy effective action in the Coulomb branch.Comment: 40 pages, 5 figures, JHEP class. Some footnotes added and typos corrected. Version published in JHE

    Orbital state and magnetic properties of LiV_2 O_4

    Full text link
    LiV_2 O_4 is one of the most puzzling compounds among transition metal oxides because of its heavy fermion like behavior at low temperatures. In this paper we present results for the orbital state and magnetic properties of LiV_2 O_4 obtained from a combination of density functional theory within the local density approximation and dynamical mean-field theory (DMFT). The DMFT equations are solved by quantum Monte Carlo simulations. The trigonal crystal field splits the V 3d orbitals such that the a_{1g} and e_{g}^{pi} orbitals cross the Fermi level, with the former being slightly lower in energy and narrower in bandwidth. In this situation, the d-d Coulomb interaction leads to an almost localization of one electron per V ion in the a_{1g} orbital, while the e_{g}^{pi} orbitals form relatively broad bands with 1/8 filling. 2The theoretical high-temperature paramagnetic susceptibility chi(T) follows a Curie-Weiss law with an effective paramagnetic moment p_{eff}=1.65 in agreement with the experimental results.Comment: 11 pages, 10 figures, 2 table

    Localization of gauge theory on a four-sphere and supersymmetric Wilson loops

    Full text link
    We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N=4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N=2 and the N=2* supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional N=2 superconformal gauge theory is treated similarly.Comment: 63 pages, 1 figure; v2: correction of mass parameter; v3: typos correcte

    FLUCTUATIONS OF TIME-AVERAGE MEASURED QUANTITIES

    No full text

    Fluctuations of quantities averaged over time in the course of measurements

    No full text
    The averaging effect of measuring instruments in the course of measurements of physical quantities is considered. Formulas are obtained for the calculation of the fluctuations and time correlations, taking into account the effect of the measuring equipment for classical and quantum systems. © 1978 Plenum Publishing Corporation

    Fluctuations of quantities averaged over time in the course of measurements

    No full text
    The averaging effect of measuring instruments in the course of measurements of physical quantities is considered. Formulas are obtained for the calculation of the fluctuations and time correlations, taking into account the effect of the measuring equipment for classical and quantum systems. © 1978 Plenum Publishing Corporation

    FLUCTUATIONS OF TIME-AVERAGE MEASURED QUANTITIES

    No full text
    corecore