5 research outputs found
Taming non-radiative recombination in Si nanocrystals interlinked in a porous network
A range of the distinctive physical properties, comprising high surface-to-volume ratio, possibility to achieve mechanical and chemical stability after a tailored treatment, controlled quantum confinement and the room-temperature photoluminescence, combined with mass production capabilities offer porous silicon unmatched capabilities required for the development of electro-optical devices. Yet, the mechanism of the charge carrier dynamics remains poorly controlled and understood. In particular, non-radiative recombination, often the main process of the excited carrier's decay, has not been adequately comprehended to this day. Here we show, that the recombination mechanism critically depends on the composition of surface passivation. That is, hydrogen passivated material exhibits Shockley–Read–Hall type of decay, while for oxidised surfaces, it proceeds by two orders of magnitude faster and exclusively through the Auger process. Moreover, it is possible to control the source of recombination in the same sample by applying a cyclic sequence of hydrogenation–oxidation–hydrogenation processes, and, consequently switching on-demand between Shockley–Read–Hall and Auger recombinations. Remarkably, irregardless of the recombination mechanism, the rate constant scales inversely with the average volume of individual silicon nanocrystals contained in the material. Thus, the type of the non-radiative recombination is established by the composition of the passivation, while its rate depends on the degree of the charge carriers’ quantum confinement
Atmospheric plasma-enhanced spatial-ALD of InZnO for high mobility thin film transistors
In this manuscript, the authors investigate the growth of indium zinc oxide, indium zinc oxide (InZnO, IZO) as a channel material for thin-film transistors. IZO is grown at atmospheric pressure and a high deposition rate using spatial atomic layer deposition (S-ALD). By varying the ratio of diethylzinc and trimethylindium vapor, the In/(In + Zn) ratio of the film can be accurately tuned in the entire range from zinc oxide to indium oxide. Thin film transistors with an In to Zn ratio of 2:1 show high field-effect mobility—exceeding 30 cm2/V s—and excellent stability. The authors demonstrate large scale integration in the form of 19-stage ring oscillators operating at 110 kHz. These electrical characteristics, in combination with the intrinsic advantages of atomic layer deposition, demonstrate the great potential of S-ALD for future display production
Atmospheric plasma-enhanced spatial-ALD of InZnO for high mobility thin film transistors
In this manuscript, the authors investigate the growth of indium zinc oxide, indium zinc oxide (InZnO, IZO) as a channel material for thin-film transistors. IZO is grown at atmospheric pressure and a high deposition rate using spatial atomic layer deposition (S-ALD). By varying the ratio of diethylzinc and trimethylindium vapor, the In/(In þ Zn) ratio of the film can be accurately tuned in the entire range from zinc oxide to indium oxide. Thin film transistors with an In to Zn ratio of 2:1 show high field-effect mobility—exceeding 30 cm2/V s—and excellent stability. The authors demonstrate large scale integration in the form of 19-stage ring oscillators operating at 110 kHz. These electrical characteristics, in combination with the intrinsic advantages of atomic layer deposition, demonstrate the great potential of S-ALD for future display production