2 research outputs found

    Three novel polysulfide-based conjugated polymers and characterization of their optoelectronic properties

    No full text
    The aim of this study was to investigate the effect of side chain size on the optical and charge transport properties of thin films prepared from novel conjugated polysulfide-based polymers. Three polymers, labeled P1, P2, and P3, were derived from polysulfide derivatives and had different arylene groups (5,5′- biphenylene, 4,4′-biphenylene, and 2,6-pyridylene). Optical analysis was performed using photoluminescence (PL) and UV–visible absorption spectroscopy, revealing an energy band gap of 2.41–3.02 eV; P1 emitted yellow, P2 blue-green, and P3 green. Cyclic voltammetry measurements of the electrochemical band gap and HOMO and LUMO energy levels revealed that the polymer exhibited p-type semiconductor activity; the electrical properties of diodes based on the ITO/polysulfide derivative/Al structure were explored through analysis of current-voltage characteristics. The current space charge limitation (SCLC) mechanism was used to model the behavior of these diodes; the P2 thin film layer exhibited higher mobility than the other layers. The relationship between the geometry of the polymer thin films and their optical and electrical properties was thoroughly investigated

    Polymer/Carbon Nanotube Based Nanocomposites for Photovoltaic Application: Functionalization, Structural, and Optical Properties

    No full text
    We present a systematic review of nanostructured organic materials, including synthesis methods, functionalization, and applications. First, we report the chemical and physical procedures used for preparing the polymer/carbon nanotube composites described in the literature over the last decade. We compare the properties of different polymer-based prototypes of organic nanocomposites functionalized with carbon nanotubes. Theoretical and experimental vibrational investigations provide evidence of the molecular structure describing the interaction between both components, showing that the allowed amount of carbon nanotubes and their dispersion states differ across polymers. Moreover, the nature of the solvent used in the preparation has a significant impact on the dispersion process. The integration of these materials in photovoltaic applications is discussed, where the impact of nanoparticles is evidenced through the correlation between experimental analyses and theoretical approaches based on density functional theory. Alterations in optical properties, evaluated from the absorption and luminescence process, are coherent with the solar spectrum, and a good distribution of donor/acceptor interpenetration was observed. In all cases, it was demonstrated that the performance improvement is physically related to the charge transfer from the organic matrix to the nanoparticles
    corecore