18 research outputs found

    In vitro assessment of cytotoxicity of giomer on human gingival fibroblasts

    Get PDF
    Root coverage on restored root surfaces has been considered as a challenging issue. The evaluation of cytotoxic effects of restorative materials is a fundamental requirement for sustaining the cell attachment and the clinical success of root coverage. The aim of the present study was to compare the human gingival fibroblast cytotoxicity of the recently introduced giomer composite (GC) with resin ionomer (RI) restorative material. Discs (6x2 mm) of GC and RI restorative materials were prepared using sterile Teflon mold. Extracts from the materials were incubated to cell culture medium for 24, 48 and 72 h. Human gingival fibroblasts (HGF) were exposed to the extracts of the materials while the un-incubated media served as the control group. The cytotoxicity of the materials were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In order to compare the mean values of the measured parameters a Kruskal-Walis test was carried out. MTT assay indicated that human gingival fibroblasts proliferated well in the presence of GC extract. The proliferation rate was higher in cells incubated with GC compared to RI extracts but the differences were not statistically significant (p= 0.09). This in vitro study indicated that GC is a non-toxic material for HGF. However, further studies are needed to assess the other biologic and clinical behavior of this material prior to it being considered as a potentially suitable restorative material to restore the carious root lesions candidated to root coverage procedures

    In vitro assessment of cytotoxicity of giomer on human gingival fibroblasts

    Get PDF
    Root coverage on restored root surfaces has been considered as a challenging issue. The evaluation of cytotoxic effects of restorative materials is a fundamental requirement for sustaining the cellattachment and the clinical success of root coverage. The aim of the present study was to compare the human gingival fibroblast cytotoxicity of the recently introduced giomer composite (GC) with resinionomer (RI) restorative material. Discs (6×2 mm) of GC and RI restorative materials were prepared using sterile Teflon mold. Extracts from the materials were incubated to cell culture medium for 24, 48and 72 h. Human gingival fibroblasts (HGF) were exposed to the extracts of the materials while the unincubated media served as the control group. The cytotoxicity of the materials were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In order to compare the mean values of the measured parameters a Kruskal-Walis test was carried out. MTT assay indicated that human gingival fibroblasts proliferated well in the presence of GC extract. The proliferation rate washigher in cells incubated with GC compared to RI extracts but the differences were not statistically significant (p= 0.09). This in vitro study indicated that GC is a non-toxic material for HGF. However, further studies are needed to assess the other biologic and clinical behavior of this material prior to it being considered as a potentially suitable restorative material to restore the carious root lesions candidated to root coverage procedures

    Evaluation and Comparison of the Effects of Mature Silkworm (Bombyx mori) and Silkworm Pupae Extracts on Schwann Cell Proliferation and Axon Growth: An In Vitro Study

    Get PDF
    Background: Silkworm products were first used by physicians more than 8500 years ago, in the early Neolithic period. In Persian medicine, silkworm extract has several uses for treating and preventing neurological, cardiac, and liver diseases. Mature silkworms (Bombyx mori) and their pupae contain a variety of growth factors and proteins that can be used in many repair processes, including nerve regeneration. Objectives: The study aimed to evaluate the effects of mature silkworm (Bombyx mori), and silkworm pupae extract on Schwann cell proliferation and axon growth. Methods: Silkworm (Bombyx mori) and silkworm pupae extracts were prepared. Then, the concentration and type of amino acids and proteins in the extracts were evaluated by Bradford assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and liquid chromatograph-mass spectrometer (LC-MS/MS). Also, the regenerative potential of extracts for improving Schwann cell proliferation and axon growth was examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, electron microscopy, and NeuroFilament-200 (NF-200) immunostaining. Results: According to the results of the Bradford test, the total protein content of pupae extract was almost twice that of mature worm extract. Also, SDS-PAGE analysis revealed numerous proteins and growth factors, such as bombyrin and laminin, in extracts that are involved in the repair of the nervous system. In accordance with Bradford’s results, the evaluation of extracts using LCMS/MS revealed that the number of amino acids in pupae extract was higher than in mature silkworm extract. It was found that the proliferation of Schwann cells at a concentration of 0.25 mg/mL in both extracts was higher than the concentrations of 0.01 and 0.05 mg/mL. When using both extracts on dorsal root ganglion (DRGs), an increase in length and number was observed in axons. Conclusions: The findings of this study demonstrated that extracts obtained from silkworms, especially pupae, can play an effective role in Schwann cell proliferation and axonal growth, which can be strong evidence for nerve regeneration, and, consequently, repairing peripheral nerve damage

    Enhancing Controlled Environment Agriculture in Desert Ecosystems with AC/DC Hybrid Solar Technology

    Full text link
    Received: 29 March 2023. Accepted: 26 May 2023.Controlled Environment Agriculture (CEA) plays a crucial role in promoting sustainable farming practices within the challenging climate of the Arabian Peninsula. Traditional CEAs, however, are confronted with excessive water and electricity consumption due to the region's elevated temperatures and humidity levels. To address these challenges, an innovative project was carried out at the Al Dhaid Research Station, United Arab Emirates, integrating solar-powered cooling and irrigation, closed hydroponic systems, net-house structures, root zone cooling, and ultra-low-energy drippers. The study employed a cooled greenhouse alongside two net houses, one of which was equipped with a solar-powered cooling and irrigation system. Cucumber crops were cultivated within each structure, demonstrating that the combined technologies could prolong production periods despite increasing temperatures, while simultaneously reducing energy consumption by 95% and water usage by 80%, without compromising crop yield. The findings of this study suggest that the implementation of this novel approach holds significant potential for boosting crop productivity and water efficiency in desert agriculture systems.This publication showcases a collaborative effort between ICARDA and NARS in the countries of the Arabian Peninsula. The contributions and efforts of the NARS, particularly in the UAE where this study was conducted, are highly acknowledged and appreciated. We extend our heartfelt gratitude to the Arab Fund for Economic and Social Development (AFESD) and The Kuwait Fund for Arab Economic Development (KFAED) for their invaluable financial support to ICARDA-APRP. Their generous contributions have played a crucial role in facilitating the research and implementation of this project

    Altered aortic 3D hemodynamics and geometry in pediatric Marfan syndrome patients

    Get PDF
    BACKGROUND: Blood flow dynamics make it possible to better understand the development of aortopathy and cardiovascular events in patients with Marfan syndrome (MFS). Aortic 3D blood flow characteristics were investigated in relation to aortic geometry in children and adolescents with MFS. METHODS: Twenty-five MFS patients (age 15.6 ± 4.0 years; 11 females) and 21 healthy controls (age 16.0 ± 2.6 years; 12 females) underwent magnetic resonance angiography and 4D flow CMR for assessment of thoracic aortic size and 3D blood flow velocities. Data analysis included calculation of aortic diameter and BSA-indexed aortic dimensions (Z-score) along the thoracic aorta, 3D mean systolic wall shear stress (WSS(mean)) in ten aortic segments and assessment of aortic blood flow patterns. RESULTS: Aortic root (root), ascending (AAo) and descending (DAo) aortic size was significantly larger in MFS patients than healthy controls (Root Z-score: 3.56 ± 1.45 vs 0.49 ± 0.78, p < 0.001; AAo Z-score 0.21 ± 0.95 vs −0.54 ± 0.64, p = 0.004; proximal DAo Z-score 2.02 ± 1.60 vs 0.56 ± 0.66, p < 0.001). A regional variation in prevalence and severity of flow patterns (vortex and helix flow patterns) was observed, with the aortic root and the proximal DAo (pDAo) being more frequently affected in MFS. MFS patients had significantly reduced WSS(mean) in the proximal AAo (pAAo) outer segment (0.65 ± 0.12 vs. 0.73 ± 0.14 Pa, p = 0.029) and pDAo inner segment (0.74 ± 0.17 vs. 0.87 ± 0.21 Pa, p = 0.021), as well as higher WSS(mean) in the inner segment of the distal AAo (0.94 ± 0.14 vs. 0.84 ± 0.15 Pa, p = 0.036) compared to healthy subjects. An inverse relationship existed between pDAo WSS(mean) and both pDAo diameter (R = −0.53, p < 0.001) and % diameter change along the pDAo segment (R = −0.64, p < 0.001). CONCLUSIONS: MFS children and young adults have altered aortic flow patterns and differences in aortic WSS that were most pronounced in the pAAo and pDAo, segments where aortic dissection or rupture often originate. The presence of vortex flow patterns and abnormal WSS correlated with regional size of the pDAo and are potentially valuable additional markers of disease severity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12968-017-0345-7) contains supplementary material, which is available to authorized users
    corecore