20 research outputs found

    Natural disturbance regimes for implementation of ecological forestry: a review and case study from Nova Scotia, Canada

    No full text
    Ecological forestry is based on the idea that forest patterns and processes are more likely to persist if harvest strategies produce stand structures, return intervals, and severities similar to those from natural disturbances. Taylor et al. (2020) reviewed forest natural disturbance regimes in Nova Scotia, Canada, to support implementation of ecological forestry. In this follow-up paper, we 1) review use of natural disturbance regimes to determine target harvest rotations, age structures, and residual stand structures; and 2) describe a novel approach for use of natural disturbance regimes in ecological forestry developed for Nova Scotia. Most examples of ecological forestry consider only the local, dominant disturbance agent, such as fire in boreal regions. Our approach included: 1) using current ecological land classification to map potential natural vegetation (PNV) community types; 2) determining cumulative natural disturbance effects of all major disturbances, in our case fire, hurricanes, windstorm, and insect outbreaks for each PNV; and 3) using natural disturbance regime parameters to derive guidelines for ecological forestry for each PNV. We analyzed disturbance occurrence and return intervals based on low, moderate, and high severity classes (The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    A review of natural disturbances to inform implementation of ecological forestry in Nova Scotia, Canada

    No full text
    Like many jurisdictions across North America, the province of Nova Scotia (NS) is faced with the challenge of restoring its forests to a more natural, presettlement state through implementation of ecological forestry. At the core of ecological forestry is the idea that natural forest structures and processes may be approximated by designing management practices that emulate natural disturbances. Successful natural disturbance emulation depends on fundamental knowledge of disturbance characteristics, including identification of specific disturbance agents, their spatial extent, severity, and return interval. To date, no comprehensive synthesis of existing data has been undertaken to document the natural disturbance regime of NS forests, limiting the application of natural disturbance emulation. Using over 300 years of documents and available data, we identified the main natural disturbance agents that affect NS forests and characterized their regimes. Overall, fire, wind (predominantly hurricanes), and outbreaks of spruce budworm (Choristoneura fumiferana (Clemens)) are the most important disturbance agents, causing substantial areas of low- (60%) severity disturbance. While characterization of natural historic fire is challenging, due to past human ignitions and suppression, we estimated that the mean annual disturbance rate of moderate- to high-severity fire ranged between 0.17% and 0.4%·year−1 (return interval of 250–600 years), depending on ecosystem type. Hurricanes make landfall in NS, on average, every 7 years, resulting in wide-scale (>500 ha) forest damage. While hurricane track and damage severity vary widely among storms, the return interval of low- to high-severity damage is 700–1250 years (0.14%–0.08%·year−1). Conversely, the return interval of host-specific spruce budworm outbreaks is much shorter (<50 years) but more periodic, causing wide-scale, low- to high-severity damage to spruce–fir forests every 30–40 years. Further disturbance agents such as other insects (e.g., spruce beetle), diseases, ice storms, drought, and mammals can be locally important and (or) detrimental to individual tree species but contribute little to overall disturbance in NS. Climate change is expected to significantly alter the disturbance regime of NS, affecting current disturbances (e.g., increased fire) and driving the introduction of novel agents (e.g., hemlock wooly adelgid), and continued monitoring is needed to understand these changes.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore