4,810 research outputs found

    Measuring the Upper End of the Initial Mass Function with Supernovae

    Get PDF
    Supernovae arise from progenitor stars occupying the upper end of the initial mass function. Their extreme brightness allows individual massive stars to be detected at cosmic distances, lending supernovae great potential as tracers of the upper end of the IMF and its evolution. Exploiting this potential requires progress in many areas of supernova science. These include understanding the progenitor masses that produce various types of supernovae and accurately characterizing the supernova outburst and the environment in which it was produced. I present some preliminary work identifying the environmental conditions that produce the most luminous supernovae, believed to arise from stars with masses greater than 100 M_sun. I illustrate that the presence of these extreme supernovae in small star-forming dwarfs can be used to test our understanding of the upper end of the IMF.Comment: 7 pages, 1 figure; to appear in the proceedings of the conference `UP: Have Observations Revealed a Variable Upper End of the Initial Mass Function?', ASP Conference Serie

    ASTROS: A multidisciplinary automated structural design tool

    Get PDF
    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task

    Evolution in the Volumetric Type Ia Supernova Rate from the Supernova Legacy Survey

    Get PDF
    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR_Ia) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). This analysis includes 286 spectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1 ≤ z ≤ 1.1. The volumetric SNR_Ia evolution is consistent with a rise to z ~ 1.0 that follows a power law of the form (1+z)^α, with α = 2.11 ± 0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star formation history (SFH) over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., ∝ t^(–β)) yields values from β = 0.98 ± 0.05 to β = 1.15 ± 0.08 depending on the parameterization of the cosmic SFH. A two-component model, where SNR_Ia is dependent on stellar mass (M_stellar) and star formation rate (SFR) as SNR_(Ia)(z) = A × M_(stellar)(z) + B × SFR(z), yields the coefficients A = (1.9 ± 0.1) × 10^(–1)4 SNe yr^(–1) M^(–1)_☉ and B = (3.3 ± 0.2) × 10^(–4) SNe yr^(–1) (M_☉ yr^(–1))^(–1). More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light-curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8 ≤ s < 1.0) is similar, within our measurement errors, to that of the slower objects (1.0 ≤ s < 1.3) out to z ~ 0.8

    A vapor barrier for cold testing printed circuit cards

    Get PDF
    Cold testing method prevents formation of frost on printed circuit boards and part holders during testing at sub-zero temperatures. Freon permits rapid attainment of the required testing temperature

    Pan-STARRS1 Discovery of Two Ultraluminous Supernovae at z ≈ 0.9

    Get PDF
    We present the discovery of two ultraluminous supernovae (SNe) at z ≈ 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_(bol) ≈ –22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) × 10^(51) erg. We find photospheric velocities of 12,000-19,000 km s^(–1) with no evidence for deceleration measured across ~3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star

    Supernova Constraints and Systematic Uncertainties from the First Three Years of the Supernova Legacy Survey

    Get PDF
    We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = –0.91^(+0.16)_(–0.20)(stat)^(+0.07)_(–0.14)(sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems

    Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX

    Get PDF
    We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M_V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s^(-1) at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 10^(15) cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M_(NUV) = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey
    corecore