3,016 research outputs found

    Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX

    Get PDF
    We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M_V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s^(-1) at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 10^(15) cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M_(NUV) = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey

    A simplified method to estimate tidal current effects on the ocean wave power resource

    Get PDF
    Although ocean wave power can be significantly modified by tidal currents, resource assessments at wave energy sites generally ignore this effect, mainly due to the difficulties and high computational cost of developing coupled wave-tide models. Furthermore, validating the prediction of wave-current interaction effects in a coupled model is a challenging task, due to the paucity of observational data. Here, as an alternative to fully coupled numerical models, we present a simplified analytical method, based on linear wave theory, to estimate the influence of tidal currents on the wave power resource. The method estimates the resulting increase (or decrease) in wave height and wavelength for opposing (or following) currents, as well as quantifying the change in wave power. The method is validated by applying it to two energetic locations around the UK shelf - Pentland Firth and Bristol Channel - where wave/current interactions are significant, and for which field data are available. Results demonstrate a good accuracy of the simplified analytical approach, which can thus be used as an efficient tool for making rapid estimates of tidal effects on the wave power resource. Additionally, the method can be used to help better interpret numerical model results, as well as observational data
    • …
    corecore