21 research outputs found

    Electromagnetic radiation in a time-varying background medium

    Full text link
    Analytical solutions are presented for the electromagnetic radiation by an arbitrary pulsed source into a homogeneous time-varying background medium. In the constant-impedance case an explicit radiation formula is obtained for the synchronous permittivity and permeability described by any positive function of time. As might be expected, such a medium introduces significant spectral shifts and spatio-temporal modulation, which are analized here for the linear and exponential time-variations of the medium parameters. In the varying-impedance case the solution is obtained for the fourth-order polynomial time-dependence of the permittivity. In addition to the spectral shifts and modulation this spatially homogeneous medium scatters the field introducing causal echoes at the receiver location.Comment: 17 pages, no figure

    Transverse electric scattering on inhomogeneous objects: spectrum of integral operator and preconditioning

    Full text link
    The domain integral equation method with its FFT-based matrix-vector products is a viable alternative to local methods in free-space scattering problems. However, it often suffers from the extremely slow convergence of iterative methods, especially in the transverse electric (TE) case with large or negative permittivity. We identify the nontrivial essential spectrum of the pertaining integral operator as partly responsible for this behavior, and the main reason why a normally efficient deflating preconditioner does not work. We solve this problem by applying an explicit multiplicative regularizing operator, which transforms the system to the form `identity plus compact', yet allows the resulting matrix-vector products to be carried out at the FFT speed. Such a regularized system is then further preconditioned by deflating an apparently stable set of eigenvalues with largest magnitudes, which results in a robust acceleration of the restarted GMRES under constraint memory conditions.Comment: 20 pages, 8 figure

    Classification of electromagnetic resonances in finite inhomogeneous three-dimensional structures

    Full text link
    We present a simple and unified classification of macroscopic electromagnetic resonances in finite arbitrarily inhomogeneous isotropic dielectric 3D structures situated in free space. By observing the complex-plane dynamics of the spatial spectrum of the volume integral operator as a function of angular frequency and constitutive parameters we identify and generalize all the usual resonances, including complex plasmons, real laser resonances in media with gain, and real quasi-static resonances in media with negative permittivity and gain.Comment: 4 pages, 2 figure
    corecore