197 research outputs found

    CSF Secretion Is Not Altered by NKCC1 Nor TRPV4 Antagonism in Healthy Rats

    Get PDF
    Background: Cerebrospinal fluid (CSF) secretion can be targeted to reduce elevated intracranial pressure (ICP). Sodium-potassium-chloride cotransporter 1 (NKCC1) antagonism is used clinically. However, supporting evidence is limited. The transient receptor potential vanilloid-4 (TRPV4) channel may also regulate CSF secretion and ICP elevation. We investigated whether antagonism of these proteins reduces CSF secretion. Methods: We quantified CSF secretion rates in male Wistar rats. The cerebral aqueduct was blocked with viscous mineral oil, and a lateral ventricle was cannulated. Secretion rate was measured at baseline and after antagonist administration. Acetazolamide was administered as a positive control to confirm changes in CSF secretion rates. Results: Neither NKCC1, nor TRPV4 antagonism altered CSF secretion rate from baseline, n = 3, t(2) = 1.14, p = 0.37, and n = 4, t(3) = 0.58, p = 0.6, respectively. Acetazolamide reduced CSF secretion by ~50% across all groups, n = 7, t(6) = 4.294, p = 0.005. Conclusions: Acute antagonism of NKCC1 and TRPV4 proteins at the choroid plexus does not reduce CSF secretion in healthy rats. Further investigation of protein changes and antagonism should be explored in neurological disease where increased CSF secretion and ICP are observed before discounting the therapeutic potential of protein antagonism at these sites

    Altered Cerebrospinal Fluid Clearance and Increased Intracranial Pressure in Rats 18 h After Experimental Cortical Ischaemia

    Get PDF
    Oedema-independent intracranial pressure (ICP) rise peaks 20–22-h post-stroke in rats and may explain early neurological deterioration. Cerebrospinal fluid (CSF) volume changes may be involved. Cranial CSF clearance primarily occurs via the cervical lymphatics and movement into the spinal portion of the cranio-spinal compartment. We explored whether impaired CSF clearance at these sites could explain ICP rise after stroke. We recorded ICP at baseline and 18-h post-stroke, when we expect changes contributing to peak ICP to be present. CSF clearance was assessed in rats receiving photothrombotic stroke or sham surgery by intraventricular tracer infusion. Tracer concentration was quantified in the deep cervical lymph nodes ex vivo and tracer transit to the spinal subarachnoid space was imaged in vivo. ICP rose significantly from baseline to 18-h post-stroke in stroke vs. sham rats [median = 5 mmHg, interquartile range (IQR) = 0.1–9.43, n = 12, vs. −0.3 mmHg, IQR = −1.9–1.7, n = 10], p = 0.03. There was a bimodal distribution of rats with and without ICP rise. Tracer in the deep cervical lymph nodes was significantly lower in stroke with ICP rise (0 μg/mL, IQR = 0–0.11) and without ICP rise (0 μg/mL, IQR = 0–4.47) compared with sham rats (4.17 μg/mL, IQR = 0.74–8.51), p = 0.02. ICP rise was inversely correlated with faster CSF transit to the spinal subarachnoid space (R = −0.59, p = 0.006, Spearman’s correlation). These data suggest that reduced cranial clearance of CSF via cervical lymphatics may contribute to post-stroke ICP rise, partially compensated via increased spinal CSF outflow

    Ultra-Short Duration Hypothermia Prevents Intracranial Pressure Elevation Following Ischaemic Stroke in Rats

    Get PDF
    There is a transient increase in intracranial pressure (ICP) 18–24 h after ischaemic stroke in rats, which is prevented by short-duration hypothermia using rapid cooling methods. Clinical trials of long-duration hypothermia have been limited by feasibility and associated complications, which may be avoided by short-duration cooling. Animal studies have cooled faster than is achievable in patients. We aimed to determine whether gradual cooling at a rate of 2°C/h to 33°C or 1°C/h to 34.5°C, with a 30 min duration at target temperatures, prevented ICP elevation and reduced infarct volume in rats. Transient middle cerebral artery occlusion was performed, followed by gradual cooling to target temperature. Hypothermia to 33°C prevented significant ICP elevation (hypothermia ΔICP = 1.56 ± 2.26 mmHg vs normothermia ΔICP = 8.93 ± 4.82 mmHg; p = 0.02) and reduced infarct volume (hypothermia = 46.4 ± 12.3 mm3 vs normothermia = 85.0 ± 17.5 mm3; p = 0.01). Hypothermia to 34.5°C did not significantly prevent ICP elevation or reduce infarct volume. We showed that gradual cooling to 33°C, at cooling rates achievable in patients, had the same ICP preventative effect as traditional rapid cooling methods. This suggests that this paradigm could be translated to prevent delayed ICP rise in stroke patients

    Decreased Intracranial Pressure Elevation and Cerebrospinal Fluid Outflow Resistance: A Potential Mechanism of Hypothermia Cerebroprotection Following Experimental Stroke

    Get PDF
    Background: Elevated intracranial pressure (ICP) occurs 18–24 h after ischaemic stroke and is implicated as a potential cause of early neurological deterioration. Increased resistance to cerebrospinal fluid (CSF) outflow after ischaemic stroke is a proposed mechanism for ICP elevation. Ultra-short duration hypothermia prevents ICP elevation 24 h post-stroke in rats. We aimed to determine whether hypothermia would reduce CSF outflow resistance post-stroke. Methods: Transient middle cerebral artery occlusion was performed, followed by gradual cooling to 33 °C. At 18 h post-stroke, CSF outflow resistance was measured using a steady-state infusion method. Results: Hypothermia to 33 °C prevented ICP elevation 18 h post-stroke (hypothermia ∆ICP = 0.8 ± 3.6 mmHg vs. normothermia ∆ICP = 4.4 ± 2.0 mmHg, p = 0.04) and reduced infarct volume 24 h post-stroke (hypothermia = 78.6 ± 21.3 mm(3) vs. normothermia = 108.1 ± 17.8 mm(3); p = 0.01). Hypothermia to 33 °C did not result in a significant reduction in CSF outflow resistance compared with normothermia controls (0.32 ± 0.36 mmHg/µL/min vs. 1.07 ± 0.99 mmHg/µL/min, p = 0.06). Conclusions: Hypothermia treatment was protective in terms of ICP rise prevention, infarct volume reduction, and may be implicated in CSF outflow resistance post-stroke. Further investigations are warranted to elucidate the mechanisms of ICP elevation and hypothermia treatment

    Modafinil treatment modulates functional connectivity in stroke survivors with severe fatigue

    Get PDF
    Post-stroke fatigue has a significant impact on stroke survivors’ mental and physical well-being. Our recent clinical trial showed significant reduction of post-stroke fatigue with modafinil treatment, however functional connectivity changes in response to modafinil have not yet been explored in stroke survivors with post-stroke fatigue. Twenty-eight participants (multidimensional fatigue inventory-20 ≥ 60) had MRI scans at baseline, and during modafinil and placebo treatment. Resting-state functional MRI data were obtained, and independent component analysis was used to extract functional networks. Resting-state functional connectivity (rsFC) was examined between baseline, modafinil and placebo treatment using permutation testing with threshold-free cluster enhancement. Overall twenty-eight participants (mean age: 6 +/-2 14.3, mean baseline MFI-20: 72.3 +/-9.24) were included. During modafinil treatment, increased rsFC was observed in the right hippocampus (p = 0.004, 11 voxels) compared to placebo. This coincided with lower rsFC in the left frontoparietal (inferior parietal lobule, p = 0.023, 13 voxels), somatosensory (primary somatosensory cortex; p = 0.009, 32 voxels) and mesolimbic network (temporal pole, p = 0.016, 35 voxels). In conclusion, modafinil treatment induces significant changes in rsFC in post-stroke fatigue. This modulation of rsFC may relate to a reduction of post-stroke fatigue; however, the relationship between sensory processing, neurotransmitter expression and fatigue requires further exploration

    Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats

    Get PDF
    Abstract Reperfusion therapies re-establish blood flow after arterial occlusion and improve outcome for ischaemic stroke patients. Intracranial pressure (ICP) elevation occurs 18–24 h after experimental stroke. This elevation is prevented by short-duration hypothermia spanning the time of reperfusion. We aimed to determine whether hypothermia-rewarming completed prior to reperfusion, also prevents ICP elevation 24 h post-stroke. Transient middle cerebral artery occlusion was performed on male outbred Wistar rats. Sixty-minute hypothermia to 33 °C, followed by rewarming was induced prior to reperfusion in one group, and after reperfusion in another group. Normothermia controls received identical anaesthesia protocols. ΔICP from pre-stroke to 24 h post-stroke was measured, and infarct volumes were calculated. Rewarming pre-reperfusion prevented ICP elevation (ΔICP = 0.3 ± 3.9 mmHg vs. normothermia ΔICP = 5.2 ± 2.1 mmHg, p = 0.02) and reduced infarct volume (pre-reperfusion = 78.6 ± 23.7 mm3 vs. normothermia = 125.1 ± 44.3 mm3, p = 0.04) 24 h post-stroke. There were no significant differences in ΔICP or infarct volumes between hypothermia groups rewarmed pre- or post-reperfusion. Hypothermia during reperfusion is not necessary for prevention of ICP rise or infarct volume reduction. Short-duration hypothermia may be an applicable early treatment strategy for stroke patients prior to- during-, and after reperfusion therapy

    Growth Hormone Deficiency Is Frequent After Recent Stroke

    Get PDF
    Introduction: The incidence of pituitary dysfunction after severe ischemic stroke is unknown, however given the increasing attention to pituitary dysfunction after neurological injuries such as traumatic brain injury, this may represent a novel area of research in stroke.Methods: We perform an arginine and human growth hormone releasing hormone challenge on ischemic stroke patients within a week of symptom onset.Results: Over the study period, 13 patients were successfully tested within a week of stroke (baseline NIHSS 10, range 7–16). Overall, 9(69%) patients had a poor response, with 7(54%) of these patients meeting the criteria for had human growth hormone deficiency. Other measures of pituitary function were within normal ranges.Conclusion: After major ischemic stroke, low GH levels are common and may play a role in stroke recovery

    Heptanoate is neuroprotective in vitro but triheptanoin post-treatment did not protect against middle cerebral artery occlusion in rats

    Get PDF
    Triheptanoin, the medium-chain triglyceride of heptanoate, has been shown to be anticonvulsant and neuroprotective in several neurological disorders. In the gastrointestinal tract, triheptanoin is cleaved to heptanoate, which is then taken up by the blood and most tissues, including liver, heart and brain. Here we evaluated the neuroprotective effects of heptanoate and its effects on mitochondrial oxygen consumption in vitro. We also investigated the neuroprotective effects of triheptanoin compared to long-chain triglycerides when administered after stroke onset in rats. Heptanoate pre-treatment protected cultured neurons against cell death induced by oxygen glucose deprivation and N-methyl-D-aspartate. Incubation of cultured astrocytes with heptanoate for 2 h increased mitochondrial proton leak and also enhanced basal respiration and ATP turnover, suggesting that heptanoate protects against oxidative stress and is used as fuel. However, continuous 72 h infusion of triheptanoin initiated 1 h after middle cerebral artery occlusion in rats did not alter stroke volume at 3 days or neurological deficit at 1 and 3 days relative to long-chain triglyceride control treatment

    An online intervention for improving stroke survivors' health-related quality of life : study protocol for a randomised controlled trial

    Get PDF
    Background: Recurrent stroke is a major contributor to stroke-related disability and costs. Improving health-risk behaviours and mental health has the potential to significantly improve recovery, enhance health-related quality of life (HRQoL), independent living, and lower the risk of recurrent stroke. The primary aim will be to test the effectiveness of an online intervention to improve HRQoL among stroke survivors at 6 months' follow-up. Programme effectiveness on four health behaviours, anxiety and depression, cost-effectiveness, and impact on other hospital admissions will also be assessed. Methods/design: An open-label randomised controlled trial is planned. A total of 530 adults will be recruited across one national and one regional stroke registry and block randomised to the intervention or minimal care control group. The intervention group will receive access to the online programme Prevent 2nd Stroke (P2S); the minimal care control group will receive an email with Internet addresses of generic health sites designed for the general population. The primary outcome, HRQoL, will be measured using the EuroQol-5D. A full analysis plan will compare between groups from baseline to follow-up. Discussion: A low-cost per user option to supplement current care, such as P2S, has the potential to increase HRQoL for stroke survivors, and reduce the risk of second stroke
    • …
    corecore