437 research outputs found

    SybilBelief: A Semi-supervised Learning Approach for Structure-based Sybil Detection

    Full text link
    Sybil attacks are a fundamental threat to the security of distributed systems. Recently, there has been a growing interest in leveraging social networks to mitigate Sybil attacks. However, the existing approaches suffer from one or more drawbacks, including bootstrapping from either only known benign or known Sybil nodes, failing to tolerate noise in their prior knowledge about known benign or Sybil nodes, and being not scalable. In this work, we aim to overcome these drawbacks. Towards this goal, we introduce SybilBelief, a semi-supervised learning framework, to detect Sybil nodes. SybilBelief takes a social network of the nodes in the system, a small set of known benign nodes, and, optionally, a small set of known Sybils as input. Then SybilBelief propagates the label information from the known benign and/or Sybil nodes to the remaining nodes in the system. We evaluate SybilBelief using both synthetic and real world social network topologies. We show that SybilBelief is able to accurately identify Sybil nodes with low false positive rates and low false negative rates. SybilBelief is resilient to noise in our prior knowledge about known benign and Sybil nodes. Moreover, SybilBelief performs orders of magnitudes better than existing Sybil classification mechanisms and significantly better than existing Sybil ranking mechanisms.Comment: 12 page

    Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation

    Full text link
    Many security and privacy problems can be modeled as a graph classification problem, where nodes in the graph are classified by collective classification simultaneously. State-of-the-art collective classification methods for such graph-based security and privacy analytics follow the following paradigm: assign weights to edges of the graph, iteratively propagate reputation scores of nodes among the weighted graph, and use the final reputation scores to classify nodes in the graph. The key challenge is to assign edge weights such that an edge has a large weight if the two corresponding nodes have the same label, and a small weight otherwise. Although collective classification has been studied and applied for security and privacy problems for more than a decade, how to address this challenge is still an open question. In this work, we propose a novel collective classification framework to address this long-standing challenge. We first formulate learning edge weights as an optimization problem, which quantifies the goals about the final reputation scores that we aim to achieve. However, it is computationally hard to solve the optimization problem because the final reputation scores depend on the edge weights in a very complex way. To address the computational challenge, we propose to jointly learn the edge weights and propagate the reputation scores, which is essentially an approximate solution to the optimization problem. We compare our framework with state-of-the-art methods for graph-based security and privacy analytics using four large-scale real-world datasets from various application scenarios such as Sybil detection in social networks, fake review detection in Yelp, and attribute inference attacks. Our results demonstrate that our framework achieves higher accuracies than state-of-the-art methods with an acceptable computational overhead.Comment: Network and Distributed System Security Symposium (NDSS), 2019. Dataset link: http://gonglab.pratt.duke.edu/code-dat

    Forgery-Resistant Touch-based Authentication on Mobile Devices

    Full text link
    Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random "secret". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.Comment: Accepted for publication by ASIACCS'1
    • …
    corecore