111 research outputs found

    The Impact of Radiotherapy Dose on Local Control of Ewing's Sarcoma of Bone

    Get PDF
    Purpose. Improvements in the systemic management of Ewing's sarcoma of bone over the last 20 years have led to a dramatic improvement in survival. The corollary is that treatment of the primary disease requires re-evaluation, since a significant number of patients still suffer local relapse

    The future of image-guided radiotherapy-is image everything?

    Get PDF
    MR-based image-guided (IG) radiotherapy via all-in-one MR treatment units (MR-linacs) is one of the hottest topics in contemporary radiotherapy research. From ingenious engineering solutions to complex physical problems, researchers have developed machines with the promise of superior image quality, and all the advantages this may confer. Benefits include better tumour visualisation, online adaptation and the potential for image biomarker-based personalised RT. However, it is important to remember that the technical challenges are real. In many instances, they are skillfully managed rather than abolished, a point illustrated by the wide variety of MR-linac designs. The proposed benefits also deserve careful inspection. Better visibility of the primary tumour on an IG scan cannot be bad, but does not automatically equate to better IG, which often depends on a more generalised match to daily anatomy. MR-linac will undoubtedly be a rich milieu to search for IMBs, but these will need to be carefully validated, and similar work with CT-based biomarkers using existing, cheaper, and more widely available hardware is currently ongoing. Online adaptation is an attractive concept, but practicalities are complex, and more work is required to understand which patients will benefit from plan adaptation, and when. Finally, the issue of cost cannot be overlooked, nor can the research community's responsibilities to global healthcare inequalities. MR-linac is an exciting and ingenious technology, which merits both investment and research. It may not, however, have the future to itself

    The Anatomy of Sartorius Muscle and its Implications for Sarcoma Radiotherapy

    Get PDF
    Purpose: Controversy exists as to whether sartorius muscle is completely invested in fascia. If it is, then direct tumour involvement from soft tissue sarcoma of the anterior thigh would be unlikely and would justify omitting sartorius from the radiotherapy volume

    Post-Operative Radiotherapy for Soft Tissue Sarcoma of the Anterior Compartment of the Thigh: Should the Sartorius Muscle be Included?

    Get PDF
    Purpose: The clinical target volume (CTV) of post-operative radiotherapy for soft tissue sarcoma of the limbs conventionally includes the whole of the transverse cross-section of the affected anatomical compartment. In the anterior thigh sartorius appears to lie within its own fascial compartment and can be safely excluded. We investigated the potential impact of omitting sartorius from the anterior muscle compartment on patients with soft tissue sarcoma of the thigh

    Evaluation of poly (ADP-ribose) polymerase inhibitor ABT-888 combined with radiotherapy and temozolomide in glioblastoma.

    Get PDF
    BACKGROUND: The cytotoxicity of radiotherapy and chemotherapy can be enhanced by modulating DNA repair. PARP is a family of enzymes required for an efficient base-excision repair of DNA single-strand breaks and inhibition of PARP can prevent the repair of these lesions. The current study investigates the trimodal combination of ABT-888, a potent inhibitor of PARP1-2, ionizing radiation and temozolomide(TMZ)-based chemotherapy in glioblastoma (GBM) cells. METHODS: Four human GBM cell lines were treated for 5 h with 5 μM ABT-888 before being exposed to X-rays concurrently with TMZ at doses of 5 or 10 μM for 2 h. ABT-888's PARP inhibition was measured using immunodetection of poly(ADP-ribose) (pADPr). Cell survival and the different cell death pathways were examined via clonogenic assay and morphological characterization of the cell and cell nucleus. RESULTS: Combining ABT-888 with radiation yielded enhanced cell killing in all four cell lines, as demonstrated by a sensitizer enhancement ratio at 50% survival (SER50) ranging between 1.12 and 1.37. Radio- and chemo-sensitization was further enhanced when ABT-888 was combined with both X-rays and TMZ in the O6-methylguanine-DNA-methyltransferase (MGMT)-methylated cell lines with a SER50 up to 1.44. This effect was also measured in one of the MGMT-unmethylated cell lines with a SER50 value of 1.30. Apoptosis induction by ABT-888, TMZ and X-rays was also considered and the effect of ABT-888 on the number of apoptotic cells was noticeable at later time points. In addition, this work showed that ABT-888 mediated sensitization is replication dependent, thus demonstrating that this effect might be more pronounced in tumour cells in which endogenous replication lesions are present in a larger proportion than in normal cells. CONCLUSIONS: This study suggests that ABT-888 has the clinical potential to enhance the current standard treatment for GBM, in combination with conventional chemo-radiotherapy. Interestingly, our results suggest that the use of PARP inhibitors might be clinically significant in those patients whose tumour is MGMT-unmethylated and currently derive less benefit from TMZ.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Recalculation of dose for each fraction of treatment on TomoTherapy.

    Get PDF
    OBJECTIVE: The VoxTox study, linking delivered dose to toxicity requires recalculation of typically 20-37 fractions per patient, for nearly 2000 patients. This requires a non-interactive interface permitting batch calculation with multiple computers. METHODS: Data are extracted from the TomoTherapy(®) archive and processed using the computational task-management system GANGA. Doses are calculated for each fraction of radiotherapy using the daily megavoltage (MV) CT images. The calculated dose cube is saved as a digital imaging and communications in medicine RTDOSE object, which can then be read by utilities that calculate dose-volume histograms or dose surface maps. The rectum is delineated on daily MV images using an implementation of the Chan-Vese algorithm. RESULTS: On a cluster of up to 117 central processing units, dose cubes for all fractions of 151 patients took 12 days to calculate. Outlining the rectum on all slices and fractions on 151 patients took 7 h. We also present results of the Hounsfield unit (HU) calibration of TomoTherapy MV images, measured over an 8-year period, showing that the HU calibration has become less variable over time, with no large changes observed after 2011. CONCLUSION: We have developed a system for automatic dose recalculation of TomoTherapy dose distributions. This does not tie up the clinically needed planning system but can be run on a cluster of independent machines, enabling recalculation of delivered dose without user intervention. ADVANCES IN KNOWLEDGE: The use of a task management system for automation of dose calculation and outlining enables work to be scaled up to the level required for large studies.JES is supported by Cancer Research UK through the Cambridge Cancer Centre. MR, AB and KH are supported by Cancer Research UK through the VoxTox Research Programme. NGB is supported by the NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. The final version is available from British Institute of Radiology via http://dx.doi.org/10.1259/bjr.2015077

    Accumulated dose to the rectum, measured using dose-volume histograms and dose-surface maps, is different from planned dose in all patients treated with radiotherapy for prostate cancer.

    Get PDF
    OBJECTIVE: We sought to calculate accumulated dose (DA) to the rectum in patients treated with radiotherapy for prostate cancer. We were particularly interested in whether dose-surface maps (DSMs) provide additional information to dose-volume histograms (DVHs). METHODS: Manual rectal contours were obtained for kilovoltage and daily megavoltage CT scans for 10 participants from the VoxTox study (380 scans). Daily delivered dose recalculation was performed using a ray-tracing algorithm. Delivered DVHs were summated to create accumulated DVHs. The rectum was considered as a cylinder, cut and unfolded to produce daily delivered DSMs; these were summated to produce accumulated DSMs. RESULTS: Accumulated dose-volumes were different from planned in all participants. For one participant, all DA levels were higher and all volumes were larger than planned. For four participants, all DA levels were lower and all volumes were smaller than planned. For each of these four participants, ≥1% of pixels on the accumulated DSM received ≥5 Gy more than had been planned. CONCLUSION: Differences between accumulated and planned dose-volumes were seen in all participants. DSMs were able to identify differences between DA and planned dose that could not be appreciated from the DVHs. Further work is needed to extract the dose data embedded in the DSMs. These will be correlated with toxicity as part of the VoxTox Programme. ADVANCES IN KNOWLEDGE: DSMs are able to identify differences between DA and planned dose that cannot be appreciated from DVHs alone and should be incorporated into future studies investigating links between DA and toxicity.JES is supported by Cancer Research UK through the Cambridge Cancer Centre. NGB is supported by the NIHR Cambridge Biomedical Research Centre. KH, MR and AMB are supported by the VoxTox Research Programme, which is funded by Cancer Research UK.This is the final version of the article. It first appeared from the British Institute of Radiology via http://dx.doi.org/10.1259/bjr.2015024
    corecore