6,877 research outputs found
A Possible Nanometer-scale Computing Device Based on an Adding Cellular Automaton
We present a simple one-dimensional Cellular Automaton (CA) which has the
property that an initial state composed of two binary numbers evolves quickly
into a final state which is their sum. We call this CA the Adding Cellular
Automaton (ACA). The ACA requires only 2N two-state cells in order to add any
two N-1 bit binary numbers. The ACA could be directly realized as a wireless
nanometer-scale computing device - a possible implementation using coupled
quantum dots is outlined.Comment: 8 pages, RevTex, 3 Postscript figures. This version to appear in App.
Phys. Let
Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre
Negative curvature fibre (NCF) guides light in its core by inhibiting the coupling of core and cladding modes. In this work, an NCF was designed and fabricated to transmit ultrashort optical pulses for multiphoton microscopy with low group velocity dispersion (GVD) at 800 nm. Its attenuation was measured to be <0.3 dB m(-1) over the range 600-850 nm and the GVD was -180 ± 70 fs(2) m(-1) at 800 nm. Using an average fibre output power of ∼20 mW and pulse repetition rate of 80 MHz, the NCF enabled pulses with a duration of <200 fs to be transmitted through a length of 1.5 m of fibre over a tuning range of 180 nm without the need for dispersion compensation. In a 4 m fibre, temporal and spectral pulse widths were maintained to within 10% of low power values up to the maximum fibre output power achievable with the laser system used of 278 mW at 700 nm, 808 mW at 800 nm and 420 mW at 860 nm. When coupled to a multiphoton microscope, it enabled imaging of ex vivo tissue using excitation wavelengths from 740 nm to 860 nm without any need for adjustments to the set-up
The Effects of Orbital Motion on LISA Time Delay Interferometry
In an effort to eliminate laser phase noise in laser interferometer
spaceborne gravitational wave detectors, several combinations of signals have
been found that allow the laser noise to be canceled out while gravitational
wave signals remain. This process is called time delay interferometry (TDI). In
the papers that defined the TDI variables, their performance was evaluated in
the limit that the gravitational wave detector is fixed in space. However, the
performance depends on certain symmetries in the armlengths that are available
if the detector is fixed in space, but that will be broken in the actual
rotating and flexing configuration produced by the LISA orbits. In this paper
we investigate the performance of these TDI variables for the real LISA orbits.
First, addressing the effects of rotation, we verify Daniel Shaddock's result
that the Sagnac variables will not cancel out the laser phase noise, and we
also find the same result for the symmetric Sagnac variable. The loss of the
latter variable would be particularly unfortunate since this variable also
cancels out gravitational wave signal, allowing instrument noise in the
detector to be isolated and measured. Fortunately, we have found a set of more
complicated TDI variables, which we call Delta-Sagnac variables, one of which
accomplishes the same goal as the symmetric Sagnac variable to good accuracy.
Finally, however, as we investigate the effects of the flexing of the detector
arms due to non-circular orbital motion, we show that all variables, including
the interferometer variables, which survive the rotation-induced loss of
direction symmetry, will not completely cancel laser phase noise when the
armlengths are changing with time. This unavoidable problem will place a
stringent requirement on laser stability of 5 Hz per root Hz.Comment: 12 pages, 2 figure
Photometry of the Young Open Cluster Trumpler 37
Photoelectric UBV observations of 120 stars in the young open cluster Trumpler 37 are presented, primarily in the magnitude range 10.0\u3c
Interplay between excitation kinetics and reaction-center dynamics in purple bacteria
Photosynthesis is arguably the fundamental process of Life, since it enables
energy from the Sun to enter the food-chain on Earth. It is a remarkable
non-equilibrium process in which photons are converted to many-body excitations
which traverse a complex biomolecular membrane, getting captured and fueling
chemical reactions within a reaction-center in order to produce nutrients. The
precise nature of these dynamical processes -- which lie at the interface
between quantum and classical behaviour, and involve both noise and
coordination -- are still being explored. Here we focus on a striking recent
empirical finding concerning an illumination-driven transition in the
biomolecular membrane architecture of {\it Rsp. Photometricum} purple bacteria.
Using stochastic realisations to describe a hopping rate model for excitation
transfer, we show numerically and analytically that this surprising shift in
preferred architectures can be traced to the interplay between the excitation
kinetics and the reaction center dynamics. The net effect is that the bacteria
profit from efficient metabolism at low illumination intensities while using
dissipation to avoid an oversupply of energy at high illumination intensities.Comment: 21 pages, 13 figures, accepted for publication in New Journal of
Physic
Microscopic analytical theory of a correlated, two-dimensional N-electron gas in a magnetic field
We present a microscopic, analytical theory describing a confined N-electron
gas in two dimensions subject to an external magnetic field. The number of
electrons N and strength of the electron-electron interaction can be
arbitrarily large, and all Landau levels are included implicitly. A possible
connection with the Integer and Fractional Quantum Hall Effects is proposed.Comment: The revised version contains minor changes to text. To be published
in J. Phys: Condens. Mat
After the Global Fund: who can sustain the HIV/AIDS response in Peru and how?
Peru has received around $70 million from Global Fund to fight AIDS, Tuberculosis and Malaria (Global Fund). Recent economic growth resulted in grant ineligibility, enabling greater government funding, yet doubts remain concerning programme continuity. This study examines the transition from Global Fund support to increasing national HIV/AIDS funding in Peru (2004-2012) by analysing actor roles, motivations and effects on policies, identifying recommendations to inform decision-makers on priority areas. A conceptual framework, which informed data collection, was developed. Thirty-five in-depth interviews were conducted from October to December 2011 in Lima, Peru, among key stakeholders involved in HIV/AIDS work. Findings show that Global Fund involvement led to important breakthroughs in the HIV/AIDS response, primarily concerning treatment access, focus on vulnerable populations and development of a coordination body. Nevertheless, reliance on Global Fund financing for prevention activities via non-governmental organisations, compounded by lack of government direction and weak regional governance, diluted power and caused role uncertainty. Strengthening government and regional capacity and fostering accountability mechanisms will facilitate an effective transition to government-led financing. Only then can achievements gained from the Global Fund presence be maintained, providing lessons for countries seeking to sustain programmes following donor exit
Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy
The analysis of gravitational wave data involves many model selection
problems. The most important example is the detection problem of selecting
between the data being consistent with instrument noise alone, or instrument
noise and a gravitational wave signal. The analysis of data from ground based
gravitational wave detectors is mostly conducted using classical statistics,
and methods such as the Neyman-Pearson criteria are used for model selection.
Future space based detectors, such as the \emph{Laser Interferometer Space
Antenna} (LISA), are expected to produced rich data streams containing the
signals from many millions of sources. Determining the number of sources that
are resolvable, and the most appropriate description of each source poses a
challenging model selection problem that may best be addressed in a Bayesian
framework. An important class of LISA sources are the millions of low-mass
binary systems within our own galaxy, tens of thousands of which will be
detectable. Not only are the number of sources unknown, but so are the number
of parameters required to model the waveforms. For example, a significant
subset of the resolvable galactic binaries will exhibit orbital frequency
evolution, while a smaller number will have measurable eccentricity. In the
Bayesian approach to model selection one needs to compute the Bayes factor
between competing models. Here we explore various methods for computing Bayes
factors in the context of determining which galactic binaries have measurable
frequency evolution. The methods explored include a Reverse Jump Markov Chain
Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes
Information Criterion (BIC), and the Laplace approximation to the model
evidence. We find good agreement between all of the approaches.Comment: 11 pages, 6 figure
KSwAGS: A Swift X-ray and UV Survey of the Kepler Field. I
We introduce the first phase of the Kepler-Swift Active Galaxies and Stars
survey (KSwAGS), a simultaneous X-ray and UV survey of ~6 square degrees of the
Kepler field using the Swift XRT and UVOT. We detect 93 unique X-ray sources
with S/N>3 with the XRT, of which 60 have observed UV counterparts. We use the
Kepler Input Catalog (KIC) to obtain the optical counterparts of these sources,
and construct the X-ray to optical flux ratio as a first approximation of the
classification of the source. The survey produces a mixture of stellar sources,
extragalactic sources, and sources which we are not able to classify with
certainty. We have obtained optical spectra for thirty of these targets, and
are conducting an ongoing observing campaign to fully identify the sample. For
sources classified as stellar or AGN with certainty, we construct SEDs using
the 2MASS, UBV and GALEX data supplied for their optical counterparts by the
KIC, and show that the SEDs differ qualitatively between the source types, and
so can offer a method of classification in absence of a spectrum. Future papers
in this series will analyze the timing properties of the stars and AGN in our
sample separately. Our survey provides the first X-ray and UV data for a number
of known variable stellar sources, as well as a large number of new X-ray
detections in this well-studied portion of the sky. The KSwAGS survey is
currently ongoing in the K2 ecliptic plane fields.Comment: Accepted for publication in the Astronomical Journal. 19 pages, 8
figures, 3 table
- …