1,245 research outputs found
Statistical Physics of Self-Replication
Self-replication is a capacity common to every species of living thing, and
simple physical intuition dictates that such a process must invariably be
fueled by the production of entropy. Here, we undertake to make this intuition
rigorous and quantitative by deriving a lower bound for the amount of heat that
is produced during a process of self-replication in a system coupled to a
thermal bath. We find that the minimum value for the physically allowed rate of
heat production is determined by the growth rate, internal entropy, and
durability of the replicator, and we discuss the implications of this finding
for bacterial cell division, as well as for the pre-biotic emergence of
self-replicating nucleic acids.Comment: 4+ pages, 1 figur
Mean field approaches to the totally asymmetric exclusion process with quenched disorder and large particles
The process of protein synthesis in biological systems resembles a one
dimensional driven lattice gas in which the particles (ribosomes) have spatial
extent, covering more than one lattice site. Realistic, nonuniform gene
sequences lead to quenched disorder in the particle hopping rates. We study the
totally asymmetric exclusion process with large particles and quenched disorder
via several mean field approaches and compare the mean field results with Monte
Carlo simulations. Mean field equations obtained from the literature are found
to be reasonably effective in describing this system. A numerical technique is
developed for computing the particle current rapidly. The mean field approach
is extended to include two-point correlations between adjacent sites. The
two-point results are found to match Monte Carlo simulations more closely
Circuit architecture explains functional similarity of bacterial heat shock responses
Heat shock response is a stress response to temperature changes and a
consecutive increase in amounts of unfolded proteins. To restore homeostasis,
cells upregulate chaperones facilitating protein folding by means of
transcription factors (TF). We here investigate two heat shock systems: one
characteristic to gram negative bacteria, mediated by transcriptional activator
sigma32 in E. coli, and another characteristic to gram positive bacteria,
mediated by transcriptional repressor HrcA in L. lactis. We construct simple
mathematical model of the two systems focusing on the negative feedbacks, where
free chaperons suppress sigma32 activation in the former, while they activate
HrcA repression in the latter. We demonstrate that both systems, in spite of
the difference at the TF regulation level, are capable of showing very similar
heat shock dynamics. We find that differences in regulation impose distinct
constrains on chaperone-TF binding affinities: the binding constant of free
sigma32 to chaperon DnaK, known to be in 100 nM range, set the lower limit of
amount of free chaperon that the system can sense the change at the heat shock,
while the binding affinity of HrcA to chaperon GroE set the upper limit and
have to be rather large extending into the micromolar range.Comment: 17 pages, 5 figure
Instabilities in complex mixtures with a large number of components
Inside living cells are complex mixtures of thousands of components. It is
hopeless to try to characterise all the individual interactions in these
mixtures. Thus, we develop a statistical approach to approximating them, and
examine the conditions under which the mixtures phase separate. The approach
approximates the matrix of second virial coefficients of the mixture by a
random matrix, and determines the stability of the mixture from the spectrum of
such random matrices.Comment: 4 pages, uses RevTeX 4.
A Kohn-Sham system at zero temperature
An one-dimensional Kohn-Sham system for spin particles is considered which
effectively describes semiconductor {nano}structures and which is investigated
at zero temperature. We prove the existence of solutions and derive a priori
estimates. For this purpose we find estimates for eigenvalues of the
Schr\"odinger operator with effective Kohn-Sham potential and obtain
-bounds of the associated particle density operator. Afterwards,
compactness and continuity results allow to apply Schauder's fixed point
theorem. In case of vanishing exchange-correlation potential uniqueness is
shown by monotonicity arguments. Finally, we investigate the behavior of the
system if the temperature approaches zero.Comment: 27 page
Identification of a conditionally essential heat shock protein in Escherichia coli
Protein D48.5 was recognized as a heat-inducible protein of Escherichia coli during the screening of a group of random, temperature-inducible Mud-Lac fusion mutants. Physiological and genetic analysis demonstrated that (i) the structural gene for this protein, designated htpI, is a member of the o32-dependent heat shock regulon, (ii) at 37[deg]C the synthesis of protein D48.5 is nearly constitutive, increasing slightly with growth rate in media of different composition, and (iii) this protein is essential for growth at high temperature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31386/1/0000299.pd
The cytoplasm of living cells: A functional mixture of thousands of components
Inside every living cell is the cytoplasm: a fluid mixture of thousands of
different macromolecules, predominantly proteins. This mixture is where most of
the biochemistry occurs that enables living cells to function, and it is
perhaps the most complex liquid on earth. Here we take an inventory of what is
actually in this mixture. Recent genome-sequencing work has given us for the
first time at least some information on all of these thousands of components.
Having done so we consider two physical phenomena in the cytoplasm: diffusion
and possible phase separation. Diffusion is slower in the highly crowded
cytoplasm than in dilute solution. Reasonable estimates of this slowdown can be
obtained and their consequences explored, for example, monomer-dimer equilibria
are established approximately twenty times slower than in a dilute solution.
Phase separation in all except exceptional cells appears not to be a problem,
despite the high density and so strong protein-protein interactions present. We
suggest that this may be partially a byproduct of the evolution of other
properties, and partially a result of the huge number of components present.Comment: 11 pages, 1 figure, 1 tabl
Thermodynamics of Heat Shock Response
Production of heat shock proteins are induced when a living cell is exposed
to a rise in temperature. The heat shock response of protein DnaK synthesis in
E.coli for temperature shifts from temperature T to T plus 7 degrees,
respectively to T minus 7 degrees is measured as function of the initial
temperature T. We observe a reversed heat shock at low T. The magnitude of the
shock increases when one increase the distance to the temperature , thereby mimicking the non monotous stability of proteins at low
temperature. Further we found that the variation of the heat shock with T
quantitatively follows the thermodynamic stability of proteins with
temperature. This suggest that stability related to hot as well as cold
unfolding of proteins is directly implemented in the biological control of
protein folding. We demonstrate that such an implementation is possible in a
minimalistic chemical network.Comment: To be published in Physical Review Letter
Genome-scale gene/reaction essentiality and synthetic lethality analysis
Synthetic lethals are to pairs of non-essential genes whose simultaneous deletion prohibits growth. One can extend the concept of synthetic lethality by considering gene groups of increasing size where only the simultaneous elimination of all genes is lethal, whereas individual gene deletions are not. We developed optimization-based procedures for the exhaustive and targeted enumeration of multi-gene (and by extension multi-reaction) lethals for genome-scale metabolic models. Specifically, these approaches are applied to iAF1260, the latest model of Escherichia coli, leading to the complete identification of all double and triple gene and reaction synthetic lethals as well as the targeted identification of quadruples and some higher-order ones. Graph representations of these synthetic lethals reveal a variety of motifs ranging from hub-like to highly connected subgraphs providing a birds-eye view of the avenues available for redirecting metabolism and uncovering complex patterns of gene utilization and interdependence. The procedure also enables the use of falsely predicted synthetic lethals for metabolic model curation. By analyzing the functional classifications of the genes involved in synthetic lethals, we reveal surprising connections within and across clusters of orthologous group functional classifications
- …