3 research outputs found
Sunlight鈥恠ensitive plasmonic nanostructured composites as photocatalytic coating with antibacterial properties
Infections caused by microorganisms are a global public health problem that continually demands new antimicrobial strategies. The generation of reactive oxygen species (ROS) by photocatalytic materials is an attractive approach to combat microbes. Along these lines, titanium dioxide (TiO2) constitutes an outstanding light-driven ROS generator. However, the wide bandgap of this semiconductor limits its use to the ultraviolet range of the spectral region. Herein, nanostructured materials composed of TiO2 nanoparticles and plasmonic gold nanorods (AuNRs) are presented for the photoinactivation of bacteria by means of sunlight irradiation, aiming to extend the photocatalytic action of the nanocomposite to the visible and near-infrared ranges. It is shown that, upon simulated sunlight irradiation, the different composites as coating films show photodegradation of rhodamine B, ROS production, photocatalytic inactivation of protein function in bacterial biofilms, and strong antimicrobial activity. This approach involving AuNRs/TiO2 photocatalytic composites may pave the way for the fabrication of visible light-responsive surfaces with antimicrobial activity.Universidade de Vigo/CISU
Balancing near-field enhancement and hot carrier injection: plasmonic photocatalysis in energy-transfer cascade assemblies
Photocatalysisstands as a very promisingalternativeto photovoltaicsin exploitingsolar energyand storingit inchemicalproductsthrougha single-stepprocess.A centralobstacleto its broad implementationis its low conversionefficiency,motivatingresearchin differentfields to bring about a breakthroughin this technology.Using plasmonicmaterialsto photosensitizetraditionalsemiconductorphotocatalystsis a popularstrategywhose full potentialis yet to be fully exploited.In this work, we useCdS quantumdots as a bridge system,reapingenergyfrom Au nanostructuresand deliveringit to TiO2nanoparticlesservingascatalyticcenters.The quantumdots can do this by becomingan intermediatestep in a charge-transfercascadeinitiatedin theplasmonicsystemor by creatingan electron鈭抙olepair at an improvedrate due to their interactionwith the enhancednear-fieldcreatedby the plasmonicnanoparticles.Our results show a significantaccelerationin the reactionupon combiningthese elementsinhybrid colloidalphotocatalyststhat promotethe role of the near-fieldenhancementeffect, and we show how to engineercomplexesexploitingthis approach.In doing so, we also explorethe complexinterplaybetweenthe differentmechanismsinvolvedin thephotocatalyticprocess,highlightingthe importanceof the Au nanoparticles鈥檓orphologyin their photosensitizingcapabilitiesMinisterio de Universidades | Ref. 33.50.460A.752Ministerio de Ciencia e Innovaci贸n | Ref. PDC2021-121787-I00Ministerio de Ciencia e Innovaci贸n | Ref. PID2020-113704RB-I00Ministerio de Ciencia e Innovaci贸n | Ref. PID2020-118282RA-I00Ministerio de Ciencia e Innovaci贸n | Ref. PID2020-120306RB-I00Ministerio de Ciencia e Innovaci贸n | Ref. RYC2021-033818-IMinisterio de Ciencia e Innovaci贸n | Ref. TED2021-130038A-I00Ministerio de Ciencia e Innovaci贸n | Ref. TED2021-132101B-I00Xunta de Galicia | Ref. IN607A 2018/5Generalitat de Catalunya | Ref. 2020SGR00166Centro Singular de Investigaci贸n de Galicia | Ref. ED431G 201906National Natural Science Foundation of China | Ref. 22250610200Universitat Rovira i Virgili | Ref. 2021PFR-URV-B2-02United States-Israel Binational Science Foundation | Ref. 2018050Universidade de Vigo/CISU
Dese帽o de nanoh铆bridos metal-semicondutor para aplicaci贸ns fotocatal铆ticas
The development of nanohybrids in which a semiconductor as TiO2 is combined with plasmonic nanoparticles produces the formation of photocatalysts with a catalytic activity expanded to a wider region of the electromagnetic spectrum. Such complex materials are capable of absorbing radiation much more efficiently than the original semiconductor. On the other hand, the use of several substrates to form these materials (for example, colloidal silica or polystyrene, thermosensitive polymers or anisotropic oxides) allows controlling the interaction between the plasmonic particles and the semiconductor to optimize the final hybrid depending on the desired application.
The main objective of this work will be the development of several hybrid photocatalysts using different substrates in order to optimize the distance, distribution and interaction of the particles to achieve more efficient catalysts depending on the desired application.El desarrollo de nanoh铆bridos en los que un semiconductor como el TiO2 es combinado con nanopart铆culas plasm贸nicas produce la formaci贸n de fotocatalizadores con una actividad catal铆tica que se expande a una regi贸n m谩s amplia del espectro electromagn茅tico. Dichos materiales complejos son capaces de absorber radiaci贸n de un modo mucho m谩s eficiente que el semiconductor original. Por otro lado, el empleo de varios sustratos para formar estos materiales (por ejemplo, s铆lice o poliestireno coloidales, pol铆meros termosensibles u 贸xidos anisotr贸picos) permite controlar la interacci贸n entre las part铆culas plasm贸nicas y el semiconductor para optimizar el h铆brido final en funci贸n de la aplicaci贸n deseada.
El objetivo fundamental de este trabajo ser谩 el desarrollo de varios fotocatalizadores h铆bridos utilizando diferentes sustratos con el fin de optimizar la distancia, la distribuci贸n y la interacci贸n de las part铆culas para lograr catalizadores m谩s eficientes en funci贸n de la aplicaci贸n deseada.O desenvolvemento de nanoh铆bridos nos que un semiconductor como TiO2 茅 combinado con nanopart铆culas plasm贸nicas produce a formaci贸n de fotocatalizadores cunha actividade catal铆tica que se expande a unha rexi贸n m谩is ampla do espectro electromagn茅tico. Tales materiais complexos son capaces de absorber unha radiaci贸n moito m谩is eficiente que o semicondutor orixinal. Por outra banda, o uso de varios substratos para formar estes materiais (por exemplo, s铆lice coloidal ou poliestireno, pol铆meros termosensibles ou 贸xidos anis贸tropos) permite controlar a interacci贸n entre as part铆culas plasm贸nicas e os semicondutores para optimizar o h铆brido final dependendo da aplicaci贸n desexada. .
O obxectivo principal deste traballo ser谩 o desenvolvemento de varios fotocatalizadores h铆bridos que utilizan diferentes substratos para optimizar a distancia, a distribuci贸n e a interacci贸n das part铆culas para lograr catalizadores m谩is eficientes dependendo da aplicaci贸n desexada