7 research outputs found

    Quasi-static crack propagation by Griffith's criterion

    Get PDF
    We consider the propagation of a crack in a brittle material along a prescribed crack path and define a quasi-static evolution by means of stationary points of the free energy. We show that this evolution satisfies Griffith's criterion in a suitable form which takes into account both stable and unstable propagations, as well as an energy balance formula which accounts for dissipation in the unstable regime. If the load is monotonically increasing, this solution is explicit and almost everywhere unique. For more general loads we construct a solution via time discretization. Finally, we consider a finite element discretization of the problem and prove convergence of the discrete solutions

    SOME REMARKS ON THE VISCOUS APPROXIMATION OF CRACK GROWTH

    No full text
    We describe an existence result for quasistatic evolutions of cracks in antiplane elasticity obtained in [16] by a vanishing viscosity approach, with free (but regular enough) crack path. We underline in particular the motivations for the choice of the class of admissible cracks and of the dissipation potential. Moreover, we extend the result to a model with applied forces depending on time
    corecore