36 research outputs found

    Toward Kinecting cognition by behaviour recognition-based deep learning and big data

    Get PDF
    The majority of older people wish to live independently at home as long as possible despite having a range of age-related conditions including cognitive impairment. To facilitate this, there has been an extensive focus on exploring the capability of new technologies with limited success. This paper investigates whether MS Kinect (a motion-based sensing 3-D scanner device) within the MiiHome (My Intelligent Home) project in conjunction with other sensory data, machine learning and big data techniques can assist in the diagnosis and prognosis of cognitive impairment and hence prolong independent living. A pool of Kinect devices and various sensors powered by minicomputers providing internet connectivity are being installed in up to 200 homes. This enables continuous remote monitoring of elderly residents living alone. Passive and off-the-shelf sensor technologies were chosen to implement data acquisition specifically from sources that are part of the fabric of the homes, so that no extra effort is required from the participants. Various constraints including environmental, geometrical and big data were identified and appropriately dealt with. A visualization tool (MAGID) was developed for validation and verification of numerous behavioural activities. Then, a subset of data, from twelve pensioners aged over 65 with age-related cognitive decline and frailty, were collected over a period of 6 months. These data were subjected to several machine learning algorithms (multilayer perceptron neural network, neuro-fuzzy and deep learning) for classification and to extract routine behavioural patterns. These patterns were then analysed further to ascertain any health-related information and their attributes. For the first time, important routine behaviour related to Activities of Daily Living (ADL) of elderly people with cognitive and physical decline has been learnt by machine learning techniques from selected sample data obtained by MS Kinect. Medically important behaviour, e.g. eating, walking, sitting, was best learnt by deep learning with accuracy of 99.30% during training stage and average error rate of 1.83% with maximum of 12.98% during the implementation phase. Observations obtained from the application of the above learnt behaviours are presented as trends over a period of time. These trends, supplemented by other sensory signals, have provided a clearer picture of physical (in)activities (including falls) of the pensioners. The calculated behavioural attributes related to key indicators of health events can be used to model the trajectory of health status related to cognitive decline in a home setting. These results, based on a small number of elderly residents over a short period of time, imply that within the results obtained from the MiiHome project, it is possible to find indicators of cognitive decline. However, further studies are needed for full clinical validation of these indications in conjunction with assessment of cognitive decline of the participants

    A quantitative evaluation of drive pattern selection for optimizing EIT-based stretchable sensors

    Get PDF
    Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback in EIT-based sensors however, is their low spatial resolution due to the ill-posed nature of the EIT reconstruction. In this paper, we show our performance evaluation of different EIT drive patterns, specifically strategies for electrode selection when performing current injection and voltage measurements. We compare voltage data with Signal to Noise Ratio (SNR) and Boundary Voltage Changes (BVC), and study image quality with Size Error (SE), Position Error (PE) and Ringing (RNG) parameters, in the case of one-point and two-point simultaneous contact locations. The study shows that, in order to improve the performance of EIT based sensors, the electrode selection strategies should dynamically change correspondingly to the location of the input stimuli. In fact, the selection of a drive pattern over another can improve the target size detection and position accuracy up to 4.7% and 18% respectively

    Variable stiffness McKibben muscles with hydraulic and pneumatic operating modes

    Get PDF
    McKibben muscles have been shown to have improved stiffness characteristics when operating hydraulically. However, when operating pneumatically they are compliant and so have potential for safer physical Human Robot Interaction (pHRI). This paper presents a method for rapidly switching between pneumatic and hydraulic modes of operation without the need to remove all hydraulic fluid from the actuator. A compliant and potentially safe pneumatic mode is demonstrated and compared with a much stiffer hydraulic mode. The paper also explores a combined pneumatic/hydraulic mode of operation which allows both the position of the joint and the speed at which it reacts to a disturbance force to be controlled

    Novel soft bending actuator based power augmentation hand exoskeleton controlled by human intention

    Get PDF
    This article presents the development of a soft material power augmentation wearable robot using novel bending soft artificial muscles. This soft exoskeleton was developed as a human hand power augmentation system for healthy or partially hand disabled individuals. The proposed prototype serves healthy manual workers by decreasing the muscular effort needed for grasping objects. Furthermore, it is a power augmentation wearable robot for partially hand disabled or post-stroke patients, supporting and augmenting the fingers’ grasping force with minimum muscular effort in most everyday activities. This wearable robot can fit any adult hand size without the need for any mechanical system changes or calibration. Novel bending soft actuators are developed to actuate this power augmentation device. The performance of these actuators has been experimentally assessed. A geometrical kinematic analysis and mathematical output force model have been developed for the novel actuators. The performance of this mathematical model has been proven experimentally with promising results. The control system of this exoskeleton is created by hybridization between cascaded position and force closed loop intelligent controllers. The cascaded position controller is designed for the bending actuators to follow the fingers in their bending movements. The force controller is developed to control the grasping force augmentation. The operation of the control system with the exoskeleton has been experimentally validated. EMG signals were monitored during the experiments to determine that the proposed exoskeleton system decreased the muscular efforts of the wearer

    A variable stiffness soft gripper using granular jamming and biologically inspired pneumatic muscles

    Get PDF
    As the domains in which robots operate change the objects a robot may be required to grasp and manipulate are likely to vary significantly and often. Furthermore there is increasing likelihood that in the future robots will work collaboratively alongside people. There has therefore been interest in the development of biologically inspired robot designs which take inspiration from nature. This paper presents the design and testing of a variable stiffness, three fingered soft gripper which uses pneumatic muscles to actuate the fingers and granular jamming to vary their stiffness. This gripper is able to adjust its stiffness depending upon how fragile/deformable the object being grasped is. It is also lightweight and low inertia making it better suited to operation near people. Each finger is formed from a cylindrical rubber bladder filled with a granular material. It is shown how decreasing the pressure inside the finger increases the jamming effect and raises finger stiffness. The paper shows experimentally how the finger stiffness can be increased from 21 to 71 N/m. The paper also describes the kinematics of the fingers and demonstrates how they can be position-controlled at a range of different stiffness values

    Agricultural Robotics: The Future of Robotic Agriculture

    Get PDF
    Agri-Food is the largest manufacturing sector in the UK. It supports a food chain that generates over £108bn p.a., with 3.9m employees in a truly international industry and exports £20bn of UK manufactured goods. However, the global food chain is under pressure from population growth, climate change, political pressures affecting migration, population drift from rural to urban regions and the demographics of an aging global population. These challenges are recognised in the UK Industrial Strategy white paper and backed by significant investment via a Wave 2 Industrial Challenge Fund Investment ("Transforming Food Production: from Farm to Fork"). Robotics and Autonomous Systems (RAS) and associated digital technologies are now seen as enablers of this critical food chain transformation. To meet these challenges, this white paper reviews the state of the art in the application of RAS in Agri-Food production and explores research and innovation needs to ensure these technologies reach their full potential and deliver the necessary impacts in the Agri-Food sector

    A comprehensive review of swarm optimization algorithms

    Get PDF
    Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained, and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches

    Predicting the valence of a scene from observers’ eye movements

    Get PDF
    Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images
    corecore