1,457 research outputs found

    Geometry of logarithmic strain measures in solid mechanics

    Full text link
    We consider the two logarithmic strain measuresωiso=devnlogU=devnlogFTF and ωvol=tr(logU)=tr(logFTF),\omega_{\rm iso}=\|\mathrm{dev}_n\log U\|=\|\mathrm{dev}_n\log \sqrt{F^TF}\|\quad\text{ and }\quad \omega_{\rm vol}=|\mathrm{tr}(\log U)|=|\mathrm{tr}(\log\sqrt{F^TF})|\,,which are isotropic invariants of the Hencky strain tensor logU\log U, and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group GL(n)\mathrm{GL}(n). Here, FF is the deformation gradient, U=FTFU=\sqrt{F^TF} is the right Biot-stretch tensor, log\log denotes the principal matrix logarithm, .\|.\| is the Frobenius matrix norm, tr\mathrm{tr} is the trace operator and devnX\mathrm{dev}_n X is the nn-dimensional deviator of XRn×nX\in\mathbb{R}^{n\times n}. This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor ε=symu\varepsilon=\mathrm{sym}\nabla u, which is the symmetric part of the displacement gradient u\nabla u, and reveals a close geometric relation between the classical quadratic isotropic energy potential μdevnsymu2+κ2[tr(symu)]2=μdevnε2+κ2[tr(ε)]2\mu\,\|\mathrm{dev}_n\mathrm{sym}\nabla u\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\mathrm{sym}\nabla u)]^2=\mu\,\|\mathrm{dev}_n\varepsilon\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\varepsilon)]^2in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energyμdevnlogU2+κ2[tr(logU)]2=μωiso2+κ2ωvol2,\mu\,\|\mathrm{dev}_n\log U\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\log U)]^2=\mu\,\omega_{\rm iso}^2+\frac\kappa2\,\omega_{\rm vol}^2\,,where μ\mu is the shear modulus and κ\kappa denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor RR, where F=RUF=R\,U is the polar decomposition of FF. We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity

    An ellipticity domain for the distortional Hencky-logarithmic strain energy

    Full text link
    We describe ellipticity domains for the isochoric elastic energy FdevnlogU2=logFTF(detF)1/n2=14logC(detC)1/n2 F\mapsto \|{\rm dev}_n\log U\|^2=\bigg\|\log \frac{\sqrt{F^TF}}{(\det F)^{1/n}}\bigg\|^2 =\frac{1}{4}\,\bigg\|\log \frac{C}{({\rm det} C)^{1/n}}\bigg\|^2 for n=2,3n=2,3, where C=FTFC=F^TF for FGL+(n)F\in {\rm GL}^+(n). Here, devnlogU=logU1ntr(logU)1 ⁣ ⁣1{\rm dev}_n\log {U} =\log {U}-\frac{1}{n}\, {\rm tr}(\log {U})\cdot 1\!\!1 is the deviatoric part of the logarithmic strain tensor logU\log U. For n=2n=2 we identify the maximal ellipticity domain, while for n=3n=3 we show that the energy is Legendre-Hadamard elliptic in the set E3(WHiso,LH,U,23):={UPSym(3)  dev3logU223}\mathcal{E}_3\bigg(W_{_{\rm H}}^{\rm iso}, {\rm LH}, U, \frac{2}{3}\bigg)\,:=\,\bigg\{U\in{\rm PSym}(3) \;\Big|\, \|{\rm dev}_3\log U\|^2\leq \frac{2}{3}\bigg\}, which is similar to the von-Mises-Huber-Hencky maximum distortion strain energy criterion. Our results complement the characterization of ellipticity domains for the quadratic Hencky energy WH(F)=μdev3logU2+κ2[tr(logU)]2 W_{_{\rm H}}(F)=\mu \,\|{\rm dev}_3\log U\|^2+ \frac{\kappa}{2}\,[{\rm tr} (\log U)]^2 , U=FTFU=\sqrt{F^TF} with μ>0\mu>0 and κ>23μ\kappa>\frac{2}{3}\, \mu, previously obtained by Bruhns et al

    A Riemannian approach to strain measures in nonlinear elasticity

    Get PDF
    The isotropic Hencky strain energy appears naturally as a distance measure of the deformation gradient to the set SO(n) of rigid rotations in the canonical left-invariant Riemannian metric on the general linear group GL(n). Objectivity requires the Riemannian metric to be left-GL(n)-invariant, isotropy requires the Riemannian metric to be right-O(n)-invariant. The latter two conditions are satisfied for a three-parameter family of Riemannian metrics on the tangent space of GL(n). Surprisingly, the final result is basically independent of the chosen parameters. In deriving the result, geodesics on GL(n) have to be parametrized and a novel minimization problem, involving the matrix logarithm for non-symmetric arguments, has to be solved
    corecore