3 research outputs found

    Is there any sense in antisense editing?

    Full text link
    A number of recent studies have hypothesized that sense-antisense RNA transcript pairs create dsRNA duplexes that undergo extensive A-to-I RNA editing. Here we studied human and mouse genomic antisense regions, and found that the editing level in these areas is negligible. This observation puts in question the scope of sense-antisense duplexes formation in-vivo, which is the basis for a number of proposed regulatory mechanisms

    RNA editing level in the mouse is determined by the genomic repeat repertoire

    No full text
    A-to-I RNA editing is the conversion of adenosine to inosine in double-stranded cellular and viral RNAs. Recently, abundant editing of human transcripts affecting thousands of genes has been reported. Most editing sites are confined to the primate-specific Alu repeats. Notably, the editing level in mouse was shown to be much lower. In order to find the reason for this dramatic difference, here we identify editing sites within mouse repeats and analyze the sequence properties required for RNA editing. Our results show that the overall rate of RNA editing is determined by specific properties of different repeat families such as abundance, length, and divergence. We show that the striking difference in editing levels between human and mouse is mostly due to the higher divergence of the different mouse repeats
    corecore