3 research outputs found

    Antigen-specific tumor vaccine efficacy in vivo against prostate cancer with low class I MHC requires competent class II MHC

    Full text link
    BACKGROUND Cancers can escape immune recognition by means of evading class I major histocompatibility complex (MHC) -mediated recognition by cytotoxic T lymphocytes. However, immunization strategies targeting defined tumor-associated antigens have not been extensively characterized in murine prostate cancer models. Therefore, we evaluated antigen-specific, antitumor immunity after antigen-encoding vaccinia immunization against mouse prostate cancer cells expressing a model tumor-associated antigen (Β-galactosidase) and exhibiting partially deficient class I MHC. METHODS AND RESULTS Low class I MHC expression in Β-galactosidase–expressing D7RM-1 prostate cancer cells was shown by fluorescence activated cell sorting, and deficient class I MHC-mediated antigen presentation was shown in resistance of D7RM-1 to cytolysis by Β-galactosidase–specific cytotoxic T lymphocytes (CTL). Despite partially deficient class I MHC presenting function, immunization with vaccinia encoding Β-galactosidase conferred antigen-specific protection against D7RM-1 cancer. Antigen-specific immunity was recapitulated in Β 2 m knockout mice (with deficient class I MHC and CTL function), confirming that class I MHC antigen presentation was not required for immunity against tumor partially deficient in class I MHC. Conversely, antigen-specific antitumor immunity was abrogated in A b Β knockout mice (with deficient class II MHC and helper T cell function), demonstrating a requirement for functional class II MHC. Resistant tumors from the otherwise effectively immunized Β 2 m knockout mice (among which tumor progression had been reduced or delayed) showed reduced target antigen expression, corroborating antigen-specificity (and showing an alternative immune escape mechanism), whereas antigen expression (like tumor growth) was unaffected among A b Β knockout mice. CONCLUSION Our results demonstrate that class I MHC-restricted antigen presentation and CTL activity is neither necessary nor sufficient for antigen-encoding vaccinia immunization to induce protective immunity against class I MHC-low tumors, whereas host class II MHC-mediated antigen presentation facilitates antigen-specific immunity against prostate cancer in vivo. Reduced expression of the target antigen developed rapidly in vivo as an immune escape mechanism for such cancers. Prostate 53: 183–191, 2002. © 2002 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34762/1/10136_ftp.pd
    corecore