22 research outputs found

    Phosphorylation and translocation of heat shock protein 27 and αB-crystallin in human myocardium after cardioplegia and cardiopulmonary bypass

    Get PDF
    ObjectivesCardiac surgery using cardioplegia and cardiopulmonary bypass subjects myocardium to hypothermic reversible ischemic injury that can impair cardiac function. Research in animal and cell models demonstrates that acute myocardial ischemia/reperfusion injury causes phosphorylation of heat shock protein 27 and αB-crystallin. Phosphorylation of heat shock protein 27 and αB-crystallin is implicated in the regulation of both beneficial and detrimental responses to ischemic injury. The phosphorylation status of these proteins in human myocardium after ischemic insults associated with cardioplegia and cardiopulmonary bypass is unknown.MethodsRight atrial appendage and chest wall skeletal muscle samples were collected from patients before and after cardioplegia and cardiopulmonary bypass. Cardioplegia and cardiopulmonary bypass-induced changes in phosphorylation and localization of heat shock protein 27 and αB-crystallin were determined using immunoblot and confocal microscopy with total and phospho-specific antibodies.ResultsCardioplegia and cardiopulmonary bypass increased the phosphorylation of heat shock protein 27 on serine 15, 78, and 82, and αB-crystallin on serine 59 and 45, but not serine 19. The majority of heat shock protein 27 and αB-crystallin localized to I-bands of cardiac myofilaments and shifted to a detergent insoluble fraction after cardioplegia and cardiopulmonary bypass. Cardioplegia and cardiopulmonary bypass–induced phosphorylation of specific heat shock protein 27 and αB-crystallin residues were associated with additional subcellular locations. Increases in phosphorylation of heat shock protein 27 and αB-crystallin were negatively correlated with cardiac function after surgery.ConclusionCardiac surgery using cardioplegia and cardiopulmonary bypass is associated with phosphorylation and myofilament translocation of heat shock protein 27 and αB-crystallin in human myocardium. Phosphorylation of specific heat shock protein 27 and αB-crystallin serine residues is associated with distinct localization. Understanding the human myocardial small heat shock protein response may have significant implications for surgical myocardial protection

    Insulin treatment enhances the myocardial angiogenic response in diabetes

    Get PDF
    ObjectiveGrowth factor and cell-based angiogenesis are attractive therapeutic options for diabetic patients with end-stage coronary disease. Reduced collateral vessel formation observed in diabetes is associated with increased expression of anti-angiogenic proteins, angiostatin and endostatin. The aim of this study was to determine the effects of insulin treatment on the diabetic angiogenic response to chronic myocardial ischemia.MethodsYucatan miniswine were treated with alloxan (pancreatic β-cell specific toxin, 150 mg/kg) and divided into two groups. In the diabetic group (DM, n = 8), blood glucose levels were kept greater than 250 mg/dL, and in the insulin-treated group (IDM, n = 6), intramuscular insulin was administered daily to keep blood glucose less than 150 mg/dL. A third group of age-matched swine served as nondiabetic controls (ND; n = 8). Eight weeks later, all animals underwent circumflex artery ameroid constrictor placement to induce chronic ischemia. Myocardial perfusion was assessed at 3 and 7 weeks after ameroid placement using microspheres. Microvascular function, capillary density, and myocardial expression of anti-angiogenic mediators were evaluated.ResultsDiabetic animals exhibited significant impairments in endothelium-dependent microvessel relaxation to adenosine diphosphate and substance P, which were reversed in insulin-treated animals. Collateral-dependent perfusion in the ischemic circumflex territory, which was profoundly reduced in diabetic animals (−0.18 ± 0.02 vs +0.23 ± 0.07 mL · min−1 · g−1; P < .001), improved significantly with insulin treatment (0.12 ± 0.05 mL · min−1 · g−1; P < .01). Myocardial expression of anti-angiogenic proteins, angiostatin and endostatin, showing a 4.3- and 3.6-fold increase in diabetic animals respectively (both P < .01 vs ND), was markedly reduced in insulin-treated animals (2.3- and 1.8-fold vs ND; both P < .01).ConclusionsInsulin treatment successfully reversed diabetic coronary endothelial dysfunction and significantly improved the endogenous angiogenic response. These pro-angiogenic effects may be mediated through downregulation of anti-angiogenic mediators. Insulin therapy appears to be a promising modality to enhance the angiogenic response in diabetic patients

    Increased Antiangiogenic Protein Expression in the Skeletal Muscle of Diabetic Swine and Patients

    No full text

    Pharmacotherapy for end-stage coronary artery disease

    No full text
    Importance of the field: Coronary artery disease remains the leading cause of mortality in the industrialized world. Despite advances in surgical and catheterbased interventions, a select number of patients remain with no options for invasive therapy. The goal of this review is to discuss the current status of pharmacotherapeutic interventions to treat end-stage coronary artery disease. Areas covered in this review: Literature review on the topic of therapeutic angiogenesis from 1980 to 2009. What the reader will gain: Insight into current therapeutic strategies employed to manage end-stage coronary artery disease. Take home message: A promising approach focuses on augmenting the endogenous angiogenic response to chronic myocardial ischemia via the use of growth factors

    Intravenous injection of extracellular vesicles to treat chronic myocardial ischemia.

    No full text
    BackgroundMesenchymal stem cell-derived extracellular vesicles (EVs) appear to be a very exciting treatment option for heart disease. Here, we used a swine model of chronic myocardial ischemia to evaluate the efficacy of a less-invasive method of injection of EVs via a peripheral intravenous route.MethodsSixteen Yorkshire swine underwent placement of an ameroid constrictor on the left circumflex (LCx) artery at age 11 weeks to induce chronic myocardial ischemia. Two weeks later, they were divided into two groups: control (CON; n = 8), and intravenous injection of EVs (EVIV; n = 8). At 18 weeks of age, animals underwent final analysis and euthanasia. The chronically ischemic myocardium (LCx territory) was harvested for analysis.ResultsIntravenous injection (IV) of EVs induced several pro-angiogenic markers such as MAPK, JNK but not Akt. Whereas IV injections of EVs decreased VEGFR2 expression and inhibited apoptotic signaling (caspase 3), they increased expression of VEGFR1 that is believed to be anti-angiogenic. Injection of EVs did not result in an increase in vessel density and blood flow when compared to the control group.ConclusionsAlthough IV injection of EVs upregulated several pro-angiogenic signaling pathways, it failed to induce changes in vascular density in the chronically ischemic myocardium. Thus, a lack of increase in vascular density at the doses tested failed to elicit a functional response in ischemic myocardium
    corecore