77 research outputs found

    Virus-Like Particles of a Fish Nodavirus Display a Capsid Subunit Domain Organization Different from That of Insect Nodaviruses

    Get PDF
    This is the publisher's version, also available electronically from "http://jvi.asm.org".The structure of recombinant virus-like particles of malabaricus grouper nervous necrosis virus (MGNNV), a fish nodavirus isolated from the grouper Epinephelus malabaricus, was determined by electron cryomicroscopy (cryoEM) and three-dimensional reconstruction at 23-Å resolution. The cryoEM structure, sequence comparison, and protein fold recognition analysis indicate that the coat protein of MGNNV has two domains resembling those of tomato bushy stunt virus and Norwalk virus, rather than the expected single-domain coat protein of insect nodaviruses. The analysis implies that residues 83 to 216 fold as a β-sandwich which forms the inner shell of the T=3 capsid and residues 217 to 308 form the trimeric surface protrusions observed in the cryoEM map. The structural similarities between fish nodaviruses and members of the tombusvirus and calicivirus groups provide significant new data for understanding the evolution of the nodavirus family

    Capsid Protein Synthesis from Replicating RNA Directs Specific Packaging of the Genome of a Multipartite, Positive-Strand RNA Virus

    No full text
    Flock house virus (FHV) is a bipartite, positive-strand RNA insect virus that encapsidates its two genomic RNAs in a single virion. It provides a convenient model system for studying the principles underlying the copackaging of multipartite viral RNA genomes. In this study, we used a baculovirus expression system to determine if the uncoupling of viral protein synthesis from RNA replication affected the packaging of FHV RNAs. We found that neither RNA1 (which encodes the viral replicase) nor RNA2 (which encodes the capsid protein) were packaged efficiently when capsid protein was supplied in trans from nonreplicating RNA. However, capsid protein synthesized in cis from replicating RNA2 packaged RNA2 efficiently in the presence and absence of RNA1. These results demonstrated that capsid protein translation from replicating RNA2 is required for specific packaging of the FHV genome. This type of coupling between genome replication and translation and RNA packaging has not been observed previously. We hypothesize that RNA2 replication and translation must be spatially coordinated in FHV-infected cells to facilitate retrieval of the viral RNAs for encapsidation by newly synthesized capsid protein. Spatial coordination of RNA and capsid protein synthesis may be key to specific genome packaging and assembly in other RNA viruses

    Inhibition of Immune Complex Complement Activation and Neutrophil Extracellular Trap Formation by Peptide Inhibitor of Complement C1

    No full text
    Two major aspects of systemic lupus erythematosus (SLE) pathogenesis that have yet to be targeted therapeutically are immune complex-initiated complement activation and neutrophil extracellular trap (NET) formation by neutrophils. Here, we report in vitro testing of peptide inhibitor of complement C1 (PIC1) in assays of immune complex-mediated complement activation in human sera and assays for NET formation by human neutrophils. The lead PIC1 derivative, PA-dPEG24, was able to dose-dependently inhibit complement activation initiated by multiple types of immune complexes (IC), including C1-anti-C1q IC, limiting the generation of pro-inflammatory complement effectors, including C5a and membrane attack complex (sC5b-9). In several instances, PA-dPEG24 achieved complete inhibition with complement effector levels equivalent to background. PA-dPEG24 was also able to dose-dependently inhibit NET formation by human neutrophils stimulated by PMA, MPO, or immune complex activated human sera. In several instances PA-dPEG24 achieved complete inhibition with NETosis with quantitation equivalent to background levels. These results suggest that PA-dPEG24 inhibition of NETs occurs by blocking the MPO pathway of NET formation. Together these results demonstrate that PA-dPEG24 can inhibit immune complex activation of the complement system and NET formation. This provides proof of concept that peptides can potentially be developed to inhibit these two important contributors to rheumatologic pathology that are currently untargeted by available therapies

    Inhibition of complement activation, myeloperoxidase, NET formation and oxidant activity by PIC1 peptide variants.

    No full text
    BackgroundA product of rational molecular design, PA-dPEG24 is the lead derivative of the PIC1 family of peptides with multiple functional abilities including classical complement pathway inhibition, myeloperoxidase inhibition, NET inhibition and antioxidant activity. PA-dPEG24 is composed of a sequence of 15 amino acid, IALILEPICCQERAA, and contains a monodisperse 24-mer PEGylated moiety at its C terminus to increase aqueous solubility. Here we explore a sarcosine substitution scan of the PA peptide to evaluate impacts on solubility in the absence of PEGylation and functional characteristics.MethodsSixteen sarcosine substitution variants were synthesized and evaluated for solubility in water. Aqueous soluble variants were then tested in standard complement, myeloperoxidase, NET formation and antioxidant capacity assays.ResultsSix sarcosine substitution variants were aqueous soluble without requiring PEGylation. Substitution with sarcosine of the isoleucine at position eight yielded a soluble peptide that surpassed the parent molecule for complement inhibition and myeloperoxidase inhibition. Substitution with sarcosine of the cysteine at position nine improved solubility, but did not otherwise change the functional characteristics compared with the parent compound. However, replacement of both vicinal cysteine residues at positions 9 and 10 with a single sarcosine residue reduced functional activity in most of the assays tested.ConclusionsSeveral of the sarcosine PIC1 variant substitutions synthesized yielded improved solubility as well as a number of unanticipated structure-function findings that provide new insights. Several sarcosine substitution variants demonstrate increased potency over the parent peptide suggesting enhanced therapeutic potential for inflammatory disease processes involving complement, myeloperoxidase, NETs or oxidant stress

    Large-Scale, pH-Dependent, Quaternary Structure Changes in an RNA Virus Capsid Are Reversible in the Absence of Subunit Autoproteolysis

    No full text
    The assembly and maturation of the coat protein of a T=4, nonenveloped, single-stranded RNA virus, Nudaurelia capensis ω virus (NωV), was examined by using a recombinant baculovirus expression system. At pH 7.6, the coat protein assembles into a stable particle called the procapsid, which is 450 Å in diameter and porous. Lowering the pH to 5.0 leads to a concerted reorganization of the subunits into a 410-Å-diameter particle called the capsid, which has no obvious pores. This conformational change is rapid but reversible until slow, autoproteolytic cleavage occurs in at least 15% of the subunits at the lower pH. In this report, we show that expression of subunits with replacement of Asn-570, which is at the cleavage site, with Thr results in assembly of particles with expected morphology but that are cleavage defective. The conformational change from procapsid to capsid is reversible in N570T mutant virus-like particles, in contrast to wild-type particles, which are locked into the capsid conformation after cleavage of the coat protein. The reexpanded procapsids display slightly different properties than the original procapsid, suggesting hysteretic effects. Because of the stability of the procapsid under near-neutral conditions and the reversible properties of the cleavage-defective mutant, NωV provides an excellent model for the study of pH-induced conformational changes in macromolecular assemblies. Here, we identify the relationship between cleavage and the conformational change and propose a pH-dependent helix-coil transition that may be responsible for the structural rearrangement in NωV

    Virus-Like Particles of a Fish Nodavirus Display a Capsid Subunit Domain Organization Different from That of Insect Nodaviruses

    Get PDF
    The structure of recombinant virus-like particles of malabaricus grouper nervous necrosis virus (MGNNV), a fish nodavirus isolated from the grouper Epinephelus malabaricus, was determined by electron cryomicroscopy (cryoEM) and three-dimensional reconstruction at 23-Å resolution. The cryoEM structure, sequence comparison, and protein fold recognition analysis indicate that the coat protein of MGNNV has two domains resembling those of tomato bushy stunt virus and Norwalk virus, rather than the expected single-domain coat protein of insect nodaviruses. The analysis implies that residues 83 to 216 fold as a β-sandwich which forms the inner shell of the T=3 capsid and residues 217 to 308 form the trimeric surface protrusions observed in the cryoEM map. The structural similarities between fish nodaviruses and members of the tombusvirus and calicivirus groups provide significant new data for understanding the evolution of the nodavirus family
    • …
    corecore