27 research outputs found
Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes
Epitope-tagged active-site-directed probes are widely used to visualize the activity of deubiquitinases (DUBs) in cell extracts, to investigate the specificity and potency of small-molecule DUB inhibitors, and to isolate and identify DUBs by mass spectrometry. With DUBs arising as novel potential drug targets, probes are required that can be produced in sufficient amounts and to meet the specific needs of a given experiment. The established method for the generation of DUB probes makes use of labor-intensive intein-based methods that have inherent limitations concerning the incorporation of unnatural amino acids and the amount of material that can be obtained. Here, we describe the total chemical synthesis of active-site-directed probes and their application to activity-based profiling and identification of functional DUBs. This synthetic methodology allowed the easy incorporation of desired tags for specific applications, for example, fluorescent reporters, handles for immunoprecipitation or affinity pull-down, and cleavable linkers. Additionally, the synthetic method can be scaled up to provide significant amounts of probe. Fluorescent ubiquitin probes allowed faster, in-gel detection of active DUBs, as compared to (immuno)blotting procedures. A biotinylated probe holding a photocleavable linker enabled the affinity pull-down and subsequent mild, photorelease of DUBs. Also, DUB activity levels were monitored in response to overexpression or knockdown, and to inhibition by small molecules. Furthermore, fluorescent probes revealed differential DUB activity profiles in a panel of lung and prostate cancer cells
Mobile late endosomes modulate peripheral endoplasmic reticulum network architecture
The endoplasmic reticulum (ER) is the largest organelle contacting virtually every other organelle for information exchange and control of processes such as transport, fusion, and fission. Here, we studied the role of the other organelles on ER network architecture in the cell periphery. We show that the co-migration of the ER with other organelles, called ER hitchhiking facilitated by late endosomes and lysosomes is a major mechanism controlling ER network architecture. When hitchhiking occurs, emerging ER structures may fuse with the existing ER tubules to alter the local ER architecture. This couples late endosomal/lysosomal positioning and mobility to ER network architecture. Conditions restricting late endosomal movement-including cell starvation-or the depletion of tether proteins that link the ER to late endosomes reduce ER dynamics and limit the complexity of the peripheral ER network architecture. This indicates that among many factors, the ER is controlled by late endosomal movement resulting in an alteration of the ER network architecture.Microscopic imaging and technolog
A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells
Tumorimmunolog
Uncoupling DNA damage from chromatin damage to detoxify doxorubicin
The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanismof anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.Therapeutic cell differentiatio
Opportunities for Small Molecules in Cancer Immunotherapy
Cancer immunotherapy has proven remarkably successful through instigation of systemic antitumor T cell responses. Despite this achievement, further advancements are needed to expand the scope of susceptible cancer types and overcome variation in treatment outcomes between patients. Small-molecule drugs targeting defined pathways and/or cells capable of immune modulation are expected to substantially improve efficacy of cancer immunotherapy. Small-molecule drugs possess unique properties compatible with systemic administration and amenable to both extracellular and intracellular targets. These compounds can modify molecular pathways to overcome immune tolerance and suppression towards effective antitumor responses. Here, we provide an overview of how such effects might be achieved by combining immunotherapy with conventional and/or new small-molecule chemotherapeutics.Tumorimmunolog
Bovine herpesvirus 1 interferes with TAP-dependent peptide transport and intracellular trafficking of MHC class I molecules in human cells
Bovine herpesvirus 1 (BoHV-1), the cause of infectious bovine rhinotracheitis and infectious pustular vulvovaginitis in cattle, establishes a lifelong infection, despite the presence of antiviral immunity in the host. BoHV-1 has been shown to elude the host immune system, but the viral gene products responsible for this interference have not yet been identified. Studies aiming at the identification of BoHV-1-encoded immune evasion genes have been hampered by the lack of bovine-specific immunological reagents. Some of the immune evasion molecules identified for other herpesviruses are host species specific; others can act across the species barrier. In this study, experiments were performed to investigate whether BoHV-1 can infect human cells and interfere with antigen processing and presentation in these cells. A human melanoma cell line, Mel JuSo, appeared to be permissive for BoHV-1 infection. BoHV-1 induced expression of major viral glycoproteins at the surface of these cells and produced progeny virus up to 105 plaque forming units per ml. BoHV-1 infection resulted in impaired intracellular transport of human MHC class I molecules and inhibition of human TAP. These data indicate that the BoHV-1-encoded molecule(s) that block antigen presentation in bovine cells are able to interact with homologous components of the human MHC class I presentation pathway. The fact that immune evasion by BoHV-1 can be studied in human cells will facilitate the identification of the BoHV-1 gene products involved in this process. Moreover, the data presented here suggest that the BoHV-1 encoded inhibitors of antigen presentation represent potential immune suppressive agents for use in humans
Chemical and genetic control of IFN gamma-induced MHCII expression
Stemcel biology/Regenerative medicine (incl. bloodtransfusion
The identification of the anthracycline aclarubicin as an effective cytotoxic agent for pancreatic cancer
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer, mainly due to its delayed diagnosis and lack of effective therapeutic options. Therefore, it is imperative to find novel treatment options for PDAC. Here, we tested a series of conventional chemotherapeutics together with anthracycline compounds as single agents or in combination, determining their effectivity against established commercial and patient-derived, low-passage PDAC cell lines. Proliferation and colony formation assays were performed to determine the anticancer activity of anthracyclines; aclarubicin and doxorubicin, on commercial and patient-derived, low-passage PDAC cell lines. In addition, the effect of standard-of-care drugs gemcitabine and individual components of FOLFIRINOX were also investigated. To evaluate which mechanisms of cell death were involved in drug response, cleavage of poly(ADP-ribose)polymerase was evaluated by western blot. Aclarubicin showed superior antitumor activity compared to other anthracyclines and standard of care drugs (gemcitabine and individual components of FOLFIRINOX) in a patient-derived, low-passage PDAC cell line and in commercial cell lines. Importantly, the combination of gemcitabine and aclarubicin showed a synergistic effect at a dose range where the single agents by themselves were ineffective. In parallel, evaluation of the antitumor activity of aclarubicin demonstrated an apoptotic effect in all PDAC cell lines. Aclarubicin is cytotoxic for commercial and patient-derived low-passage PDAC cell lines, at doses lower than peak serum concentrations for patient treatment. Our findings support a (re)consideration of aclarubicin as a backbone of new combination regimens for pancreatic cancer patients