30 research outputs found

    Lyapunov Approach to Consensus Problems

    Full text link
    This paper investigates the weighted-averaging dynamic for unconstrained and constrained consensus problems. Through the use of a suitably defined adjoint dynamic, quadratic Lyapunov comparison functions are constructed to analyze the behavior of weighted-averaging dynamic. As a result, new convergence rate results are obtained that capture the graph structure in a novel way. In particular, the exponential convergence rate is established for unconstrained consensus with the exponent of the order of 1βˆ’O(1/(mlog⁑2m))1-O(1/(m\log_2m)). Also, the exponential convergence rate is established for constrained consensus, which extends the existing results limited to the use of doubly stochastic weight matrices

    Distributed Stochastic Optimization under Imperfect Information

    Full text link
    We consider a stochastic convex optimization problem that requires minimizing a sum of misspecified agentspecific expectation-valued convex functions over the intersection of a collection of agent-specific convex sets. This misspecification is manifested in a parametric sense and may be resolved through solving a distinct stochastic convex learning problem. Our interest lies in the development of distributed algorithms in which every agent makes decisions based on the knowledge of its objective and feasibility set while learning the decisions of other agents by communicating with its local neighbors over a time-varying connectivity graph. While a significant body of research currently exists in the context of such problems, we believe that the misspecified generalization of this problem is both important and has seen little study, if at all. Accordingly, our focus lies on the simultaneous resolution of both problems through a joint set of schemes that combine three distinct steps: (i) An alignment step in which every agent updates its current belief by averaging over the beliefs of its neighbors; (ii) A projected (stochastic) gradient step in which every agent further updates this averaged estimate; and (iii) A learning step in which agents update their belief of the misspecified parameter by utilizing a stochastic gradient step. Under an assumption of mere convexity on agent objectives and strong convexity of the learning problems, we show that the sequences generated by this collection of update rules converge almost surely to the solution of the correctly specified stochastic convex optimization problem and the stochastic learning problem, respectively

    A distributed adaptive steplength stochastic approximation method for monotone stochastic Nash Games

    Full text link
    We consider a distributed stochastic approximation (SA) scheme for computing an equilibrium of a stochastic Nash game. Standard SA schemes employ diminishing steplength sequences that are square summable but not summable. Such requirements provide a little or no guidance for how to leverage Lipschitzian and monotonicity properties of the problem and naive choices generally do not preform uniformly well on a breadth of problems. While a centralized adaptive stepsize SA scheme is proposed in [1] for the optimization framework, such a scheme provides no freedom for the agents in choosing their own stepsizes. Thus, a direct application of centralized stepsize schemes is impractical in solving Nash games. Furthermore, extensions to game-theoretic regimes where players may independently choose steplength sequences are limited to recent work by Koshal et al. [2]. Motivated by these shortcomings, we present a distributed algorithm in which each player updates his steplength based on the previous steplength and some problem parameters. The steplength rules are derived from minimizing an upper bound of the errors associated with players' decisions. It is shown that these rules generate sequences that converge almost surely to an equilibrium of the stochastic Nash game. Importantly, variants of this rule are suggested where players independently select steplength sequences while abiding by an overall coordination requirement. Preliminary numerical results are seen to be promising.Comment: 8 pages, Proceedings of the American Control Conference, Washington, 201

    Differentially-private Distributed Algorithms for Aggregative Games with Guaranteed Convergence

    Full text link
    The distributed computation of a Nash equilibrium in aggregative games is gaining increased traction in recent years. Of particular interest is the mediator-free scenario where individual players only access or observe the decisions of their neighbors due to practical constraints. Given the competitive rivalry among participating players, protecting the privacy of individual players becomes imperative when sensitive information is involved. We propose a fully distributed equilibrium-computation approach for aggregative games that can achieve both rigorous differential privacy and guaranteed computation accuracy of the Nash equilibrium. This is in sharp contrast to existing differential-privacy solutions for aggregative games that have to either sacrifice the accuracy of equilibrium computation to gain rigorous privacy guarantees, or allow the cumulative privacy budget to grow unbounded, hence losing privacy guarantees, as iteration proceeds. Our approach uses independent noises across players, thus making it effective even when adversaries have access to all shared messages as well as the underlying algorithm structure. The encryption-free nature of the proposed approach, also ensures efficiency in computation and communication. The approach is also applicable in stochastic aggregative games, able to ensure both rigorous differential privacy and guaranteed computation accuracy of the Nash equilibrium when individual players only have stochastic estimates of their pseudo-gradient mappings. Numerical comparisons with existing counterparts confirm the effectiveness of the proposed approach.Comment: arXiv admin note: text overlap with arXiv:2202.0111
    corecore