1 research outputs found

    Competing magnetic fluctuations and orders in a multiorbital model of doped SrCo2_2As2_2

    Full text link
    We revisit the intriguing magnetic behavior of the paradigmatic itinerant frustrated magnet SrCo2As2\rm{Sr}\rm{Co}_2\rm{As}_2, which shows strong and competing magnetic fluctuations yet does not develop long-range magnetic order. By calculating the static spin susceptibility χ(q)\chi(\mathbf{q}) within a realistic sixteen orbital Hubbard-Hund model, we determine the leading instability to be ferromagnetic (FM). We then explore the effect of doping and calculate the critical Hubbard interaction strength UcU_c that is required for the development of magnetic order. We find that UcU_c decreases under electron doping and with increasing Hund's coupling JJ, but increases rapidly under hole doping. This suggests that magnetic order could possibly emerge under electron doping but not under hole doping, which agrees with experimental findings. We map out the leading magnetic instability as a function of doping and Hund's coupling and find several antiferromagnetic phases in addition to FM. We also quantify the degree of itinerant frustration in the model and resolve the contributions of different orbitals to the magnetic susceptibility. Finally, we discuss the dynamic spin susceptibility, χ(q,ω)\chi(\mathbf{q}, \omega), at finite frequencies, where we recover the anisotropy of the peaks at Qπ=(π,0)\mathbf{Q}_\pi = (\pi, 0) and (0,π)(0, \pi) observed by inelastic neutron scattering that is associated with the phenomenon of itinerant magnetic frustration. By comparing results between theory and experiment, we conclude that the essential experimental features of doped SrCo2_2As2_2 are well captured by a Hubbard-Hund multiorbital model if one considers a small shift of the chemical potential towards hole doping.Comment: 19 pages, 12 figure
    corecore