706 research outputs found

    Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface

    No full text
    The aim of this study was to improve our understanding of the marine iron cycle using a newly implemented technique to measure dissolved iron in seawater. The setting up of a flow-injection analyser with chemiluminescence detection (FIACL) for Fe(II) proved to be non-trivial. Extensive work was undertaken to solve problems relating to our limited level of understanding of the CL reaction, and the variable behaviour of the resins prepared to preconcentrate iron. An analyser for Fe(II)+(III) was optimised, and careful assessment of data demonstrated the high quality of the information interpreted in this study, from the Celtic Sea shelf edge (Northeast Atlantic), and from the North Scotia Ridge (Southern Ocean).The distribution of iron at the Celtic Sea shelf edge was examined, and was used to provide a conceptual framework for future studies. Dissolved Fe (< 0.4 µm) concentrations were measured in samples from nine vertical profiles taken across the continental slope (160 – 2950 m water depth). Dissolved iron concentrations varied between 0.2 and 5.4 nM, and the resulting detailed section showed evidence of a range of processes influencing the iron distributions. The presence of elevated levels of dissolved Fe near the seafloor was consistent with release of Fe from in situ particulate organic matter remineralisation at two upper slope stations, and possibly of pore water release upon resuspension on shelf. Lateral transport of dissolved iron was evident in an intermediate nepheloid layer and its advection along an isopycnal. Surface waters at the shelf break also showed evidence of vertical mixing of deeper iron-rich waters. The data also suggest some degree of stabilisation of relatively high concentrations of iron, presumably through ligand association or as colloids. The possibility of iron limitation of phytoplankton at the shelf edge was not ruled out despite obvious depletion of nitrate. This study supports the view that export of dissolved iron laterally to the ocean’s interior from shelf and coastal zones may have important implications for the global budget of oceanic iron.A set of surface samples collected on a survey between the Falkland Islands and South Georgia were analysed for total dissolvable iron. Results suggested a source of benthic iron near South Georgia. A shift in photo-physiology of phytoplankton towards South Georgia was probably influenced by the transition from iron-limited to iron-replete populations. These results therefore strongly support the hypothesis that South Georgia may be a "pulse-point" of iron to high-nutrient low-chlorophyll waters

    Are aerobic fitness and repeated sprint ability linked to fatigue in professional soccer match-play? A pilot study

    Get PDF
    This investigation examined the association between aerobic fitness and repeated sprint ability and match-related fatigue in 9 professional outfield soccer players. Aerobic fitness using maximal aerobic speed (MAS) was determined via a continuous progressive incremental running test conducted on a motorised treadmill. A repeated sprint ability test (6 successive 6 s sprints separated by 20 s passive recovery) was performed on a non-motorised treadmill to determine mean and best sprint times and a percentage decrement score (%PD). A total of 114 observations of physical performance derived using computerised time motion analyses were collected from 33 matches. Correlations between fitness test and match-play measures were examined for 1) accumulated fatigue: percentage difference between halves for total distance covered per minute, distance run at high-intensities (HIR, actions for 1s duration, >19.1 km/h) per minute, mean recovery time between high-intensity runs, and percentage difference between the distance covered in HIR in the first 5- and 15-minute periods versus the final 5- and 15-minute periods respectively in normal time; and for 2) transient fatigue: percentage difference between the distance covered in HIR in a peak 5-minute period and the subsequent 5-minute period and for the latter compared to the mean for all other 5-minute periods. No significant relationships were observed between MAS and fatigue scores (magnitude of associations: trivial to large). For mean and best sprint times and %PD, the only reported significant correlation (r=0.77, magnitude of association: very large, p<0.05) was between %PD and the % difference across halves for mean recovery time between high-intensity runs (magnitude of other associations: small to large). Criterion measures from tests of aerobic fitness and repeated sprint ability might not accurately depict a player’s capacity to resist fatigue during professional soccer competition

    Enhanced reaction kinetics in biological cells

    Full text link
    The cell cytoskeleton is a striking example of "active" medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.Comment: 10 pages, 2 figure

    Dynamic concentration of motors in microtubule arrays

    Full text link
    We present experimental and theoretical studies of the dynamics of molecular motors in microtubule arrays and asters. By solving a convection-diffusion equation we find that the density profile of motors in a two-dimensional aster is characterized by continuously varying exponents. Simulations are used to verify the assumptions of the continuum model. We observe the concentration profiles of kinesin moving in quasi two-dimensional artificial asters by fluorescent microscopy and compare with our theoretical results.Comment: 4pages, 4 figures revte

    Anomalous fluctuations of active polar filaments

    Full text link
    Using a simple model, we study the fluctuating dynamics of inextensible, semiflexible polar filaments interacting with active and directed force generating centres such as molecular motors. Taking into account the fact that the activity occurs on time-scales comparable to the filament relaxation time, we obtain some unexpected differences between both the steady-state and dynamical behaviour of active as compared to passive filaments. For the statics, the filaments have a {novel} length-scale dependent rigidity. Dynamically, we find strongly enhanced anomalous diffusion.Comment: 5 pages, 3 figure

    Nonlinear competition between asters and stripes in filament-motor-systems

    Full text link
    A model for polar filaments interacting via molecular motor complexes is investigated which exhibits bifurcations to spatial patterns. It is shown that the homogeneous distribution of filaments, such as actin or microtubules, may become either unstable with respect to an orientational instability of a finite wave number or with respect to modulations of the filament density, where long wavelength modes are amplified as well. Above threshold nonlinear interactions select either stripe patterns or periodic asters. The existence and stability ranges of each pattern close to threshold are predicted in terms of a weakly nonlinear perturbation analysis, which is confirmed by numerical simulations of the basic model equations. The two relevant parameters determining the bifurcation scenario of the model can be related to the concentrations of the active molecular motors and of the filaments respectively, which both could be easily regulated by the cell.Comment: 13 pages, 7 figure

    Mechanical design principles of a mitotic spindle

    Get PDF
    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length

    The monoclinic phase of PZT ceramics: Raman and phenomenological theory studies

    Full text link
    This work reports on the first Raman detection of the tetragonal to monoclinic phase transition in PZT ceramics near morphotropic phase boundary at low temperatures. The transition is characterized by changes in the frequency of lattice modes with the temperature. The results presented here confirm the previous one recently reported by Noheda et al. using high-resolution synchrotron X-ray powder diffraction technique and dielectric measurements. The stability of the new phase is discussed within the framework of phenomenological Landau-Devonshire Theory.Comment: 6 pages including 4 figures, Latex, submitted to Applied Physics Letter

    Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere

    Get PDF
    International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215–100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS “version 2.2” processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations

    Biophysically Realistic Filament Bending Dynamics in Agent-Based Biological Simulation

    Get PDF
    An appealing tool for study of the complex biological behaviors that can emerge from networks of simple molecular interactions is an agent-based, computational simulation that explicitly tracks small-scale local interactions – following thousands to millions of states through time. For many critical cell processes (e.g. cytokinetic furrow specification, nuclear centration, cytokinesis), the flexible nature of cytoskeletal filaments is likely to be critical. Any computer model that hopes to explain the complex emergent behaviors in these processes therefore needs to encode filament flexibility in a realistic manner. Here I present a numerically convenient and biophysically realistic method for modeling cytoskeletal filament flexibility in silico. Each cytoskeletal filament is represented by a series of rigid segments linked end-to-end in series with a variable attachment point for the translational elastic element. This connection scheme allows an empirically tuning, for a wide range of segment sizes, viscosities, and time-steps, that endows any filament species with the experimentally observed (or theoretically expected) static force deflection, relaxation time-constant, and thermal writhing motions. I additionally employ a unique pair of elastic elements – one representing the axial and the other the bending rigidity– that formulate the restoring force in terms of single time-step constraint resolution. This method is highly local –adjacent rigid segments of a filament only interact with one another through constraint forces—and is thus well-suited to simulations in which arbitrary additional forces (e.g. those representing interactions of a filament with other bodies or cross-links / entanglements between filaments) may be present. Implementation in code is straightforward; Java source code is available at www.celldynamics.org
    corecore