31 research outputs found

    A catalogue of faint local radio AGN and the properties of their host galaxies

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present a catalogue of 2210 local ( z < 0.1) galaxies that contain faint active galactic nuclei (AGN). We select these objects by identifying galaxies that exhibit a significant excess in their radio luminosities, compared to what is expected from the observed levels of star formation activity in these systems. This is achieved by comparing the optical (spectroscopic) star formation rate (SFR) to the 1.4 GHz luminosity measured from the Faint Images of the Radio Sky at Twenty centimeters survey. The majority of the AGN identified in this study are fainter than those in previous work, such as in the Best and Heckman (2012) catalogue. We show that these faint AGN make a non-negligible contribution to the radio luminosity function at low luminosities (below 1022.5 W Hz−1), and host ∼13 per cent of the local radio luminosity budget. Their host galaxies are predominantly high stellar-mass systems (with a median stellar mass of 1011 M⊙), are found across a range of environments (but typically in denser environments than star-forming galaxies) and have early-type morphologies. This study demonstrates a general technique to identify AGN in galaxy populations where reliable optical SFRs can be extracted using spectro-photometry and where radio data are also available so that a radio excess can be measured. Our results also demonstrate that it is unsafe to infer SFRs from radio emission alone, even if bright AGN have been excluded from a sample, since there is a significant population of faint radio AGN that may contaminate the radio-derived SFRs.Peer reviewedFinal Published versio

    The Fornax3D project: Tracing the assembly history of the cluster from the kinematic and line-strength maps

    Get PDF
    The 31 brightest galaxies (mB ≤ 15 mag) inside the virial radius of the Fornax cluster were observed from the centres to the outskirts with the Multi Unit Spectroscopic Explorer on the Very Large Telescope. These observations provide detailed high-resolution maps of the line-of-sight kinematics, line strengths of the stars, ionised gas reaching 2–3 Re for 21 early-type galaxies, and 1–2 Re for 10 late-type galaxies. The majority of the galaxies are regular rotators, with eight hosting a kinematically distinct core. Only two galaxies are slow rotators. The mean age, total metallicity, and [Mg/Fe] abundance ratio in the bright central region inside 0.5 Re and in the galaxy outskirts are presented. Extended emission-line gas is detected in 13 galaxies, most of them are late-type objects with wide-spread star formation. The measured structural properties are analysed in relation to the galaxies’ position in the projected phase space of the cluster. This shows that the Fornax cluster appears to consist of three main groups of galaxies inside the virial radius: the old core; a clump of galaxies, which is aligned with the local large-scale structure and was accreted soon after the formation of the core; and a group of galaxies that fell in more recently

    The Fornax 3D project: dust mix and gas properties in the centre of early-type galaxy FCC 167

    Get PDF
    Galaxies continuously reprocess their interstellar material. One can therefore expect changing dust grain properties in galaxies which have followed different evolutionary pathways. Determining the intrinsic dust grain mix of a galaxy helps in reconstructing its evolutionary history. Early-type galaxies occasionally display regular dust lanes in their central regions. Due to the relatively simple geometry and composition of their stellar bodies, these galaxies are ideal to disentangle dust mix variations from geometric effects. We therefore model the various components of such a galaxy (FCC 167). We reconstruct its recent history, and investigate the possible fate of the dust lane. MUSE and ALMA observations reveal a nested ISM structure. An ionised-gas disk pervades the central regions of FCC 167, including those occupied by the main dust lane. Inward of the dust lane, we also find a disk/ring of cold molecular gas where stars are forming and HII regions contribute to the ionised-gas emission. Further in, the gas ionisation points towards an active galactic nucleus and the fuelling of a central supermassive black hole from its surrounding ionised and molecular reservoir. Observational constraints and radiative transfer models suggest the dust and gas are distributed in a ring-like geometry and the dust mix lacks small grains. The derived dust destruction timescales from sputtering in hot gas are short and we conclude that the dust must be strongly self-shielding and clumpy, or will quickly be eroded and disappear. Our findings show how detailed analysis of individual systems can complement statistical studies of dust-lane ETGs.Comment: 14 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Fornax 3D project: Automated detection of planetary nebulae in the centres of early-type galaxies and first results

    Get PDF
    Extragalactic planetary nebulae (PNe) are detectable through relatively strong nebulous [OIII] emission and act as direct probes into the local stellar population. Because they have an apparently universal invariant magnitude cut-off, PNe are also considered to be a remarkable standard candle for distance estimation. Through detecting PNe within the galaxies, we aim to connect the relative abundances of PNe to the properties of their host galaxy stellar population. By removing the stellar background components from FCC 167 and FCC 219, we aim to produce PN luminosity functions (PNLF) of these galaxies, and thereby also estimate the distance modulus to these two systems. Finally, we test the reliability and robustness of our novel detection and analysis method. It detects unresolved point sources by their [OIII] 5007{\AA} emission within regions that have previously been unexplored. We model the [OIII] emissions in the spatial and spectral dimensions together, as afforded to us by the Multi Unit Spectroscopic Explorer (MUSE), and we draw on data gathered as part of the Fornax3D survey. For each source, we inspect the properties of the nebular emission lines to remove other sources that might hinder the safe construction of the PNLF, such as supernova remnants and HII regions. As a further step, we characterise any potential limitations and draw conclusions about the reliability of our modelling approach through a set of simulations. By applying this novel detection and modelling approach to integral field unit observations, we report for the distance estimates and luminosity-specific PNe frequency values for the two galaxies. Furthermore, we include an overview of source contamination, galaxy differences, and possible effects on the PNe populations in the dense stellar environments.Comment: 16 pages, 17 figures, 3 tables. Accepted for publication in Astronomy and Astrophysics Journal. Replaced with published versio
    corecore