4 research outputs found

    Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing

    Get PDF
    Objective(s): Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli) system and then biological activity of this protein was evaluated in animal wound healing. Materials and Methods: E. coli BL21 (DE3) competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG). The recombinant protein was purified byaffinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w) was used for external wound (25×15mm thickness) healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. Results: The recombinant protein with molecular weight of 45 kilodaltons (kDa) and concentration of 0.8 mg/ml was produced.Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Conclusion: Recombinant VEGF-A produced by pET32a in E. coli, possesses acceptable structure and has wound healing capability

    Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA) as a Candidate Subunit Cholera Vaccine

    No full text
    Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response

    Cloning and expression of the enzymatic region of Streptococcal hyaluronidase

    No full text
    Objective(s): Streptococcus pyogenes produces extracellular hyaluronidase enzyme. This enzyme is directly associated with the spread of the organism during infection. The objective of the present study was to clone and express the nucleotide sequence of the enzyme which is involved in hyaluronidase enzymatic activity. Materials and Methods: The enzymatic region of hyaluronidase gene was detected by bioinformatics method. The PCR method was used to amplify enzymatic region of hyaluronidase gene from chromosomal DNA of Streptococcus pyogenes. The eluted product was cloned into the prokaryotic expression vector pET32a which was digested by BamHI and HindIII restriction endonuclease enzymes. The target protein was expressed in the Escherichia coli. The bacteria including pET32a-hylA (hylA is abbreviation of Streptococcus pyogenes hyaluronidase gene and hylA is abbreviation of Streptococcus pyogenes hyaluronidase protein) plasmids were induced by IPTG and analyzed by SDS-PAGE. The enzymatic evaluation and antigenicity was finally studied. Results: Enzymes digestion analysis, sequencing results showed that the target gene (1296 base pair) was inserted correctly into the recombinant vector. The expressed protein (65 KDa) was purified successfully via affinity chromatography. Data also indicated that enzymatic region of hyaluronidase protein from Streptococcus pyogenes was recognized in all 5 patient’s sera. Conclusion: In general, it is possible to produce the enzymatic regions of the Streptococcus pyogenes hyaluronidase in E. coli. The antigenic property of the produced protein is well retained. Considering the product's domestic demand and also low efficiency of production and pathogenicity of Streptococcus species, it is possible to produce it as recombinant product
    corecore