174 research outputs found

    On physical nanoscale aspects of compatibility of steels with hydrogen and natural gas

    Get PDF
    The possibilities of effective solutions of relevant technological problems are considered based on the analysis of fundamental physical aspects, elucidation of the nano-structural mechanisms and interrelations of aging and hydrogen embrittlement of materials (steels) in the hydrogen industry and gas-main industries. The adverse effects which these mechanisms and processes have on the service properties and technological lifetime of materials are analyzed. The concomitant fundamental process of formation of carbohydride-like and other segregation nanostructures at dislocations (with the segregation capacity 1 to 1.5 orders of magnitude greater than in the widely used Cottrell 'atmosphere' model) and grain boundaries is discussed in the context of how these nanostructures affect technological processes (aging, hydrogen embrittlement, stress corrosion damage, and failure) and the physicomechanical properties of the metallic materials (including the technological lifetimes of pipeline steels)

    F.Y.I., 1991-05-24

    Get PDF
    Newsletter published by Governors State University between 1989-1996

    New alphabet-dependent morphological transition in a random RNA alignment

    Full text link
    We study the fraction ff of nucleotides involved in the formation of a cactus--like secondary structure of random heteropolymer RNA--like molecules. In the low--temperature limit we study this fraction as a function of the number cc of different nucleotide species. We show, that with changing cc, the secondary structures of random RNAs undergo a morphological transition: f(c)1f(c)\to 1 for cccrc \le c_{\rm cr} as the chain length nn goes to infinity, signaling the formation of a virtually "perfect" gapless secondary structure; while f(c)ccrf(c)c_{\rm cr}, what means that a non-perfect structure with gaps is formed. The strict upper and lower bounds 2ccr42 \le c_{\rm cr} \le 4 are proven, and the numerical evidence for ccrc_{\rm cr} is presented. The relevance of the transition from the evolutional point of view is discussed.Comment: 4 pages, 3 figures (title is changed, text is essentially reworked), accepted in PR

    How long does it take to pull an ideal polymer into a small hole?

    Full text link
    We present scaling estimates for characteristic times τlin\tau_{\rm lin} and τbr\tau_{\rm br} of pulling ideal linear and randomly branched polymers of NN monomers into a small hole by a force ff. We show that the absorbtion process develops as sequential straightening of folds of the initial polymer configuration. By estimating the typical size of the fold involved into the motion, we arrive at the following predictions: τlin(N)N3/2/f\tau_{\rm lin}(N) \sim N^{3/2}/f and τbr(N)N5/4/f\tau_{\rm br}(N) \sim N^{5/4}/f, and we also confirm them by the molecular dynamics experiment.Comment: 4 pages, 3 figure

    Necklace-Cloverleaf Transition in Associating RNA-like Diblock Copolymers

    Full text link
    We consider a AmBn{\rm A}_m{\rm B}_n diblock copolymer, whose links are capable of forming local reversible bonds with each other. We assume that the resulting structure of the bonds is RNA--like, i.e. topologically isomorphic to a tree. We show that, depending on the relative strengths of A--A, A--B and B--B contacts, such a polymer can be in one of two different states. Namely, if a self--association is preferable (i.e., A--A and B--B bonds are comparatively stronger than A--B contacts) then the polymer forms a typical randomly branched cloverleaf structure. On the contrary, if alternating association is preferable (i.e. A--B bonds are stronger than A--A and B--B contacts) then the polymer tends to form a generally linear necklace structure (with, probably, some rear side branches and loops, which do not influence the overall characteristics of the chain). The transition between cloverleaf and necklace states is studied in details and it is shown that it is a 2nd order phase transition.Comment: 17 pages, 9 figure

    Adsorption of a random heteropolymer at a potential well revisited: location of transition point and design of sequences

    Full text link
    The adsorption of an ideal heteropolymer loop at a potential point well is investigated within the frameworks of a standard random matrix theory. On the basis of semi-analytical/semi-numerical approach the histogram of transition points for the ensemble of quenched heteropolymer structures with bimodal symmetric distribution of types of chain's links is constructed. It is shown that the sequences having the transition points in the tail of the histogram display the correlations between nearest-neighbor monomers.Comment: 11 pages (revtex), 3 figure

    NN potentials from inverse scattering in the J-matrix approach

    Get PDF
    An approximate inverse scattering method [7,8] has been used to construct separable potentials with the Laguerre form factors. As an application, we invert the phase shifts of proton-proton in the 1S0^1S_0 and 3P23F2^3P_2-^3F_2 channels and neutron-proton in the 3S13D1^3S_1-^3D_1 channel elastic scattering. In the latter case the deuteron wave function of a realistic npnp potential was used as input.Comment: LaTex2e, 17 pages, 3 Postscript figures; corrected typo

    Thermodynamics and Topology of Disordered Systems: Statistics of the Random Knot Diagrams on Finite Lattice

    Full text link
    The statistical properties of random lattice knots, the topology of which is determined by the algebraic topological Jones-Kauffman invariants was studied by analytical and numerical methods. The Kauffman polynomial invariant of a random knot diagram was represented by a partition function of the Potts model with a random configuration of ferro- and antiferromagnetic bonds, which allowed the probability distribution of the random dense knots on a flat square lattice over topological classes to be studied. A topological class is characterized by the highest power of the Kauffman polynomial invariant and interpreted as the free energy of a q-component Potts spin system for q->infinity. It is shown that the highest power of the Kauffman invariant is correlated with the minimum energy of the corresponding Potts spin system. The probability of the lattice knot distribution over topological classes was studied by the method of transfer matrices, depending on the type of local junctions and the size of the flat knot diagram. The obtained results are compared to the probability distribution of the minimum energy of a Potts system with random ferro- and antiferromagnetic bonds.Comment: 37 pages, latex-revtex (new version: misprints removed, references added

    Nucleon-nucleon interaction in the JJ-matrix inverse scattering approach and few-nucleon systems

    Full text link
    The nucleon-nucleon interaction is constructed by means of the JJ-matrix version of inverse scattering theory. Ambiguities of the interaction are eliminated by postulating tridiagonal and quasi-tridiagonal forms of the potential matrix in the oscillator basis in uncoupled and coupled waves, respectively. The obtained interaction is very accurate in reproducing the NNNN scattering data and deuteron properties. The interaction is used in the no-core shell model calculations of 3^3H and 4^4He nuclei. The resulting binding energies of 3^3H and 4^4He are very close to experimental values.Comment: Text is revised, new figures and references adde

    Radiation-induced hydrogen transfer in metals

    Get PDF
    The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested
    corecore