14 research outputs found

    Oxidative Phosphorylation Fueled by Fatty Acid Oxidation Sensitizes Leukemic Stem Cells to Cold

    Get PDF
    Dependency on mitochondrial oxidative phosphorylation (OxPhos) is a potential weakness for leukemic stem cells (LSC) that can be exploited for therapeutic purposes. Fatty acid oxidation (FAO) is a crucial OxPhos-fueling catabolic pathway for some acute myeloid leukemia (AML) cells, particularly chemotherapy-resistant AML cells. Here, we identified cold sensitivity at 4◦C (cold killing challenge; CKC4), commonly used for sample storage, as a novel vulnerability that selectively kills AML LSCs with active FAO-supported OxPhos while sparing normal hematopoietic stem cells. Cell death of OxPhos-positive leukemic cells was induced by membrane permeabilization at 4◦C; by sharp contrast, leukemic cells relying on glycolysis were resistant. Forcing glycolytic cells to activate OxPhos metabolism sensitized them to CKC4. Lipidomic and proteomic analyses showed that OxPhos shapes the composition of the plasma membrane and introduces variation of 22 lipid subfamilies between cold-sensitive and cold-resistant cells. Together, these findings indicate that steady-state energy metabolism at body temperature predetermines the sensitivity of AML LSCs to cold temperature, suggesting that cold sensitivity could be a potential OxPhos biomarker. These results could have important implications for designing experiments for AML research to avoid cell storage at 4◦C.</p

    Repurposing the Bis-Biguanide Alexidine in Combination with Tyrosine Kinase Inhibitors to Eliminate Leukemic Stem/Progenitor Cells in Chronic Myeloid Leukemia

    No full text
    Background & aims: In CML, Leukemic Stem Cells (LSCs) that are insensitive to Tyrosine Kinase Inhibitors are responsible for leukemia maintenance and relapses upon TKI treatment arrest. We previously showed that downregulation of the BMI1 polycomb protein that is crucial for stem/progenitor cells self-renewal induced a CCNG2/dependent proliferation arrest leading to elimination of Chronic Myeloid Leukemia (CML) cells. Unfortunately, as of today, pharmacological inhibition of BMI1 has not made its way to the clinic. Methods: We used the Connectivity Map bioinformatic database to identify pharmacological molecules that could mimick BMI1 silencing, to induce CML cell death. We selected the bis-biguanide Alexidin (ALX) that produced a transcriptomic profile positively correlating with the one obtained after BMI silencing in K562 CML cells. We then evaluated the efficiency of ALX in combination with TKI on CML cells. Results: Here we report that cell growth and clonogenic activity of K562 and LAMA-84 CML cell lines were strongly inhibited by ALX. ALX didn’t modify BCR::ABL1 phosphorylation and didn’t affect BMI1 expression but was able to increase CCNG2 expression leading to autophagic processes that preceed cell death. Besides, ALX could enhance the apoptotic response induced by any Tyrosine Kinase Inhibitors (TKI) of the three generations. We also noted a strong synergism between ALX and TKIs to increase expression of caspase-9 and caspase-3 and induce PARP cleavage, Bad expression and significantly decreased Bcl-xL family member expression. We also observed that the blockage of the mitochondrial respiratory chain by ALX can be associated with inhibition of glycolysis by 2-DG to achieve an enhanced inhibition of K562 proliferation and clonogenicity. ALX specifically affected the differentiation of BCR::ABL1-transduced healthy CD34+ cells but not of mock-infected healthy CD34+ control cells. Importantly, ALX strongly synergized with TKIs to inhibit clonogenicity of primary CML CD34+ cells from diagnosed patients. Long Term Culture of Initiating Cell (LTC-IC) and dilution of the fluorescent marker CFSE allowed us to observe that ALX and Imatinib (IM) partially reduced the number of LSCs by themselves but that the ALX/IM combination drastically reduced this cell compartment. Using an in vivo model of NSG mice intravenously injected with K562-Luciferase transduced CML cells, we showed that ALX combined with IM improved mice survival. Conclusions: Collectively, our results validate the use of ALX bis-biguanide to potentiate the action of conventional TKI treatment as a potential new therapeutic solution to eradicate CML LSC

    Repurposing the Bis-Biguanide Alexidine in Combination with Tyrosine Kinase Inhibitors to Eliminate Leukemic Stem/Progenitor Cells in Chronic Myeloid Leukemia

    No full text
    Background &amp; aims: In CML, Leukemic Stem Cells (LSCs) that are insensitive to Tyrosine Kinase Inhibitors are responsible for leukemia maintenance and relapses upon TKI treatment arrest. We previously showed that downregulation of the BMI1 polycomb protein that is crucial for stem/progenitor cells self-renewal induced a CCNG2/dependent proliferation arrest leading to elimination of Chronic Myeloid Leukemia (CML) cells. Unfortunately, as of today, pharmacological inhibition of BMI1 has not made its way to the clinic. Methods: We used the Connectivity Map bioinformatic database to identify pharmacological molecules that could mimick BMI1 silencing, to induce CML cell death. We selected the bis-biguanide Alexidin (ALX) that produced a transcriptomic profile positively correlating with the one obtained after BMI silencing in K562 CML cells. We then evaluated the efficiency of ALX in combination with TKI on CML cells. Results: Here we report that cell growth and clonogenic activity of K562 and LAMA-84 CML cell lines were strongly inhibited by ALX. ALX didn&rsquo;t modify BCR::ABL1 phosphorylation and didn&rsquo;t affect BMI1 expression but was able to increase CCNG2 expression leading to autophagic processes that preceed cell death. Besides, ALX could enhance the apoptotic response induced by any Tyrosine Kinase Inhibitors (TKI) of the three generations. We also noted a strong synergism between ALX and TKIs to increase expression of caspase-9 and caspase-3 and induce PARP cleavage, Bad expression and significantly decreased Bcl-xL family member expression. We also observed that the blockage of the mitochondrial respiratory chain by ALX can be associated with inhibition of glycolysis by 2-DG to achieve an enhanced inhibition of K562 proliferation and clonogenicity. ALX specifically affected the differentiation of BCR::ABL1-transduced healthy CD34+ cells but not of mock-infected healthy CD34+ control cells. Importantly, ALX strongly synergized with TKIs to inhibit clonogenicity of primary CML CD34+ cells from diagnosed patients. Long Term Culture of Initiating Cell (LTC-IC) and dilution of the fluorescent marker CFSE allowed us to observe that ALX and Imatinib (IM) partially reduced the number of LSCs by themselves but that the ALX/IM combination drastically reduced this cell compartment. Using an in vivo model of NSG mice intravenously injected with K562-Luciferase transduced CML cells, we showed that ALX combined with IM improved mice survival. Conclusions: Collectively, our results validate the use of ALX bis-biguanide to potentiate the action of conventional TKI treatment as a potential new therapeutic solution to eradicate CML LSC

    Oxidative Phosphorylation Fueled by Fatty Acid Oxidation Sensitizes Leukemic Stem Cells to Cold

    Get PDF
    Dependency on mitochondrial oxidative phosphorylation (OxPhos) is a potential weakness for leukemic stem cells (LSC) that can be exploited for therapeutic purposes. Fatty acid oxidation (FAO) is a crucial OxPhos-fueling catabolic pathway for some acute myeloid leukemia (AML) cells, particularly chemotherapy-resistant AML cells. Here, we identified cold sensitivity at 4◦C (cold killing challenge; CKC4), commonly used for sample storage, as a novel vulnerability that selectively kills AML LSCs with active FAO-supported OxPhos while sparing normal hematopoietic stem cells. Cell death of OxPhos-positive leukemic cells was induced by membrane permeabilization at 4◦C; by sharp contrast, leukemic cells relying on glycolysis were resistant. Forcing glycolytic cells to activate OxPhos metabolism sensitized them to CKC4. Lipidomic and proteomic analyses showed that OxPhos shapes the composition of the plasma membrane and introduces variation of 22 lipid subfamilies between cold-sensitive and cold-resistant cells. Together, these findings indicate that steady-state energy metabolism at body temperature predetermines the sensitivity of AML LSCs to cold temperature, suggesting that cold sensitivity could be a potential OxPhos biomarker. These results could have important implications for designing experiments for AML research to avoid cell storage at 4◦C.</p

    Combination of PKCδ Inhibition with Conventional TKI Treatment to Target CML Models

    No full text
    Numerous combinations of signaling pathway blockades in association with tyrosine kinase inhibitor (TKI) treatment have been proposed for eradicating leukemic stem cells (LSCs) in chronic myeloid leukemia (CML), but none are currently clinically available. Because targeting protein kinase Cδ (PKCδ) was demonstrated to eliminate cancer stem cells (CSCs) in solid tumors, we evaluated the efficacy of PKCδ inhibition in combination with TKIs for CML cells. We observed that inhibition of PKCδ by a pharmacological inhibitor, by gene silencing, or by using K562 CML cells expressing dominant-negative (DN) or constitutively active (CA) PKCδ isoforms clearly points to PKCδ as a regulator of the expression of the stemness regulator BMI1. As a consequence, inhibition of PKCδ impaired clonogenicity and cell proliferation for leukemic cells. PKCδ targeting in K562 and LAMA-84 CML cell lines clearly enhanced the apoptotic response triggered by any TKI. A strong synergism was observed for apoptosis induction through an increase in caspase-9 and caspase-3 activation and significantly decreased expression of the Bcl-xL Bcl-2 family member. Inhibition of PKCδ did not modify BCR-ABL phosphorylation but acted downstream of the oncogene by downregulating BMI1 expression, decreasing clonogenicity. PKCδ inhibition interfered with the clonogenicity of primary CML CD34+ and BCR-ABL-transduced healthy CD34+ cells as efficiently as any TKI while it did not affect differentiation of healthy CD34+ cells. LTC-IC experiments pinpointed that PKCδ inhibition strongly decreased the progenitors/LSCs frequency. All together, these results demonstrate that targeting of PKCδ in combination with a conventional TKI could be a new therapeutic opportunity to affect for CML cells

    The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells

    No full text
    We show here that the antidiabetic agents metformin and phenformin and the AMPK activator AICAR exert strong anti-tumoural effects on tPTEN-/- lymphoma cells and on human T-ALL cell lines and primary samples. The compounds act by inhibiting tumour metabolism and proliferation and by inducing apoptosis in parallel with an activation of AMPK and an inhibition of constitutive mTOR. In tPTEN-/- cells, the drugs potentiated the anti-leukaemic effects of dexamethasone, and metformin and phenformin synergised with 2-deoxyglucose (2DG) to impair tumour cell survival. In vivo, metformin and AICAR strongly decreased the growth of luciferase-expressing tPTEN-/- cells xenografted in Nude mice, demonstrating that metabolism targeting could be a potent adjuvant strategy for lymphoma/leukaemia treatmen
    corecore