4 research outputs found

    Novel Algorithms for Graph Clustering Applied to Human Activities

    No full text
    In this paper, a novel algorithm (IBC1) for graph clustering with no prior assumption of the number of clusters is introduced. Furthermore, an additional algorithm (IBC2) for graph clustering when the number of clusters is given beforehand is presented. Additionally, a new measure of evaluation of clustering results is given—the accuracy of formed clusters (T). For the purpose of clustering human activities, the procedure of forming string sequences are presented. String symbols are gained by modeling spatiotemporal signals obtained from inertial measurement units. String sequences provided a starting point for forming the complete weighted graph. Using this graph, the proposed algorithms, as well as other well-known clustering algorithms, are tested. The best results are obtained using novel IBC2 algorithm: T = 96.43%, Rand Index (RI) 0.966, precision rate (P) 0.918, recall rate (R) 0.929 and balanced F-measure (F) 0.923

    Novel Improved Salp Swarm Algorithm: An Application for Feature Selection

    No full text
    We live in a period when smart devices gather a large amount of data from a variety of sensors and it is often the case that decisions are taken based on them in a more or less autonomous manner. Still, many of the inputs do not prove to be essential in the decision-making process; hence, it is of utmost importance to find the means of eliminating the noise and concentrating on the most influential attributes. In this sense, we put forward a method based on the swarm intelligence paradigm for extracting the most important features from several datasets. The thematic of this paper is a novel implementation of an algorithm from the swarm intelligence branch of the machine learning domain for improving feature selection. The combination of machine learning with the metaheuristic approaches has recently created a new branch of artificial intelligence called learnheuristics. This approach benefits both from the capability of feature selection to find the solutions that most impact on accuracy and performance, as well as the well known characteristic of swarm intelligence algorithms to efficiently comb through a large search space of solutions. The latter is used as a wrapper method in feature selection and the improvements are significant. In this paper, a modified version of the salp swarm algorithm for feature selection is proposed. This solution is verified by 21 datasets with the classification model of K-nearest neighborhoods. Furthermore, the performance of the algorithm is compared to the best algorithms with the same test setup resulting in better number of features and classification accuracy for the proposed solution. Therefore, the proposed method tackles feature selection and demonstrates its success with many benchmark datasets

    Enhancing Internet of Things Network Security Using Hybrid CNN and XGBoost Model Tuned via Modified Reptile Search Algorithm

    No full text
    This paper addresses the critical security challenges in the internet of things (IoT) landscape by implementing an innovative solution that combines convolutional neural networks (CNNs) for feature extraction and the XGBoost model for intrusion detection. By customizing the reptile search algorithm for hyperparameter optimization, the methodology provides a resilient defense against emerging threats in IoT security. By applying the introduced algorithm to hyperparameter optimization, better-performing models are constructed capable of efficiently handling intrusion detection. Two experiments are carried out to evaluate the introduced technique. The first experiment tackles detection through binary classification. The second experiment handles the task by specifically identifying the type of intrusion through multi-class classification. A publicly accessible real-world dataset has been utilized for experimentation and several contemporary algorithms have been subjected to a comparative analysis. The introduced algorithm constructed models with the best performance in both cases. The outcomes have been meticulously statistically evaluated and the best-performing model has been analyzed using Shapley additive explanations to determine feature importance for model decisions

    Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection

    No full text
    With the whirlwind evolution of technology, the quantity of stored data within datasets is rapidly expanding. As a result, extracting crucial and relevant information from said datasets is a gruelling task. Feature selection is a critical preprocessing task for machine learning to reduce the excess data in a set. This research presents a novel quasi-reflection learning arithmetic optimization algorithm - firefly search, an enhanced version of the original arithmetic optimization algorithm. Quasi-reflection learning mechanism was implemented for enhancement of population diversity, while firefly algorithm metaheuristics were used to improve the exploitation abilities of the original arithmetic optimization algorithm. The aim of this wrapper-based method is to tackle a specific classification problem by selecting an optimal feature subset. The proposed algorithm is tested and compared with various well-known methods on ten unconstrained benchmark functions, then on twenty-one standard datasets gathered from the University of California, Irvine Repository and Arizona State University. Additionally, the proposed approach is applied to the Corona disease dataset. The experimental results verify the improvements of the presented method and their statistical significance
    corecore