71 research outputs found
Molecular Markers for Sensitive Detection of Plasmodium falciparum Asexual Stage Parasites and their Application in a Malaria Clinical Trial.
Plasmodium falciparum parasite life stages respond differently to antimalarial drugs. Sensitive stage-specific molecular assays may help to examine parasite dynamics at microscopically detectable and submicroscopic parasite densities in epidemiological and clinical studies. In this study, we compared the performance of skeleton-binding protein 1 (SBP1), ring-infected erythrocyte surface antigen, Hyp8, ring-exported protein 1 (REX1), and PHISTb mRNA for detecting ring-stage trophozoite-specific transcripts using quantitative reverse transcriptase polymerase chain reaction. Markers were tested on tightly synchronized in vitro parasites and clinical trial samples alongside established markers of parasite density (18S DNA and rRNA) and gametocyte density (Pfs25 mRNA). SBP1 was the most sensitive marker but showed low-level expression in mature gametocytes. Novel markers REX1 and PHISTb showed lower sensitivity but higher specificity for ring-stage trophozoites. Using in vivo clinical trial samples from gametocyte-negative patients, we observed evidence of persisting trophozoite transcripts for at least 14 days postinitiation of treatment. It is currently not clear if these transcripts represent viable parasites that may have implications for clinical treatment outcome or transmission potential
Antibodies to malaria vaccine candidates are associated with chloroquine or sulphadoxine/pyrimethamine treatment efficacy in children in an endemic area of Burkina Faso
<p>Abstract</p> <p>Background</p> <p>Patient immune status is thought to affect the efficacy of anti-malarial chemotherapy. This is a subject of some importance, since evidence of immunity-related interactions may influence our use of chemotherapy in populations with drug resistance, as well as assessment of the value of suboptimal vaccines. The study aim was to investigate relationship between antibodies and anti-malarial drug treatment outcomes.</p> <p>Methods</p> <p>Some 248 children aged 0.5 and 15 years were recruited prior to the high malaria transmission season. Venous blood (5 ml) was obtained from each child to measure antibody levels to selected malaria antigens, using ELISA. Blood smears were also performed to assess drug efficacy and malaria infection prevalence. Children were actively followed up to record clinical malaria cases.</p> <p>Results</p> <p>IgG levels to MSP3 were always higher in the successfully treated group than in the group with treatment failure. The same observation was made for GLURP but the reverse observation was noticed for MSP1-19. Cytophilic and non-cytophilic antibodies were significantly associated with protection against all three antigens, except for IgG4 to MSP1-19 and GLURP.</p> <p>Conclusion</p> <p>Acquired anti-malarial antibodies may play an important role in the efficacy of anti-malarial drugs in younger children more susceptible to the disease.</p
Novel Insights Into the Protective Role of Hemoglobin S and C Against Plasmodium falciparum Parasitemia.
Although hemoglobin S (HbS) and hemoglobin C (HbC) are well known to protect against severe Plasmodium falciparum malaria, conclusive evidence on their role against infection has not yet been obtained. Here we show, in 2 populations from Burkina Faso (2007-2008), that HbS is associated with a 70% reduction of harboring P. falciparum parasitemia at the heterozygous state (odds ratio [OR] for AS vs AA, 0.27; 95% confidence interval [CI], .11-.66; P = .004). There is no evidence of protection for HbC in the heterozygous state (OR for AC vs AA, 1.49; 95% CI, .69-3.21; P = .31), whereas protection even higher than that observed with AS is observed in the homozygous and double heterozygous states (OR for CC + SC vs AA, 0.04; 95% CI, .01-.29; P = .002). The abnormal display of parasite-adhesive molecules on the surface of HbS and HbC infected erythrocytes, disrupting the pathogenic process of sequestration, might displace the parasite from the deep to the peripheral circulation, promoting its elimination at the spleen level
Clinical Variation of Plasmodium falciparum eba-175
The association between P. falciparum eba-175, ama-1, and msp-3 polymorphism in the pathogenicity of malaria disease was investigated. We therefore compared the prevalence of different alleles between symptomatic and asymptomatic malarial children under five years of age living in Burkina Faso. Blood filter papers were collected during the 2008 malaria transmission season from 228 symptomatic and 199 asymptomatic children under five years of age. All patients were living in the rural area of Saponé at about 50 km from Ouagadougou, the capital city of Burkina Faso. P. falciparum parasite DNA was extracted using QIAGEN kits and the alleles diversity was assessed by a nested PCR. PCR products were then digested by restriction enzymes based on already described polymorphic regions of the eba-175, ama-1, and msp-3 genes. The individual alleles eba-175_FCR3 and msp-3_K1 frequencies were statistically higher (p<0.0001) in the asymptomatic group compared to the symptomatic ones. No statistically significant difference was noted in the prevalence of ama-1-3D7, ama-1-K1, and ama-1-HB3 genotypes between the two groups (p>0.05). The comparative analysis of P. falciparum genotypes indicated that the polymorphism in eba-175 and msp-3 genotypes varied between asymptomatic and symptomatic clinical groups and may contribute to the pathogenesis of malaria
Dynamics and role of antibodies to Plasmodium falciparum merozoite antigens in children living in two settings with differing malaria transmission intensity
AbstractBackgroundYoung infants have reduced susceptibility to febrile malaria compared with older children, but the mechanism for this remains unclear. There are conflicting data on the role of passively acquired antibodies. Here, we examine antibody titres to merozoite surface antigens in the protection of children in their first two years of life in two settings with differing malaria transmission intensity and compare these titres to previously established protective thresholds.MethodsTwo cohorts of children aged four to six weeks were recruited in Banfora, Burkina and Keur Soce, Senegal and followed up for two years. Malaria infections were detected by light microscopic examination of blood smears collected at active and passive case detection visits. The titres of antibodies to the Plasmodium falciparum recombinant merozoite proteins (AMA1-3D7, MSP1-19, MSP2-Dd2, and MSP3-3D7) were measured by enzyme-linked immunosorbent assay at 1–6, 9, 12, 15 and 18 months of age and compared with the protective thresholds established in Kenyan children.ResultsAntibody titres were below the protective thresholds throughout the study period and we did not find any association with protection against febrile malaria. Antibodies to AMA1 and MSP1-19 appeared to be markers of exposure in the univariate analysis (and so associated with increasing risk) and adjusting for exposure reduced the strength and significance of this association.ConclusionThe antibody levels we measured are unlikely to be responsible for the apparent protection against febrile malaria seen in young infants. Further work to identify protective antibody responses might include functional assays and a wider range of antigens
African-specific polymorphisms in Plasmodium falciparum serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere with antibody response to BK-SE36 vaccination
Arisue N., Palacpac N.M.Q., Ntege E.H., et al. African-specific polymorphisms in Plasmodium falciparum serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere with antibody response to BK-SE36 vaccination. Frontiers in Cellular and Infection Microbiology 12, 1058081 (2022); https://doi.org/10.3389/fcimb.2022.1058081.BK-SE36, based on Plasmodium falciparum serine repeat antigen 5 (SERA5), is a blood-stage malaria vaccine candidate currently being evaluated in clinical trials. Phase 1 trials in Uganda and Burkina Faso have demonstrated promising safety and immunogenicity profiles. However, the genetic diversity of sera5 in Africa and the role of allele/variant-specific immunity remain a major concern. Here, sequence analyses were done on 226 strains collected from the two clinical trial/follow-up studies and 88 strains from two cross-sectional studies in Africa. Compared to other highly polymorphic vaccine candidate antigens, polymorphisms in sera5 were largely confined to the repeat regions of the gene. Results also confirmed a SERA5 consensus sequence with African-specific polymorphisms. Mismatches with the vaccine-type SE36 (BK-SE36) in the octamer repeat, serine repeat, and flanking regions, and single-nucleotide polymorphisms in non-repeat regions could compromise vaccine response and efficacy. However, the haplotype diversity of SERA5 was similar between vaccinated and control participants. There was no marked bias or difference in the patterns of distribution of the SE36 haplotype and no statistically significant genetic differentiation among parasites infecting BK-SE36 vaccinees and controls. Results indicate that BK-SE36 does not elicit an allele-specific immune response
Antibody responses to <i>P. falciparum</i> blood stage antigens and incidence of clinical malaria in children living in endemic area in Burkina Faso
Abstract Background High parasite-specific antibody levels are generally associated with low susceptibility to Plasmodium falciparum malaria. This has been supported by several studies in which clinical malaria cases of P. falciparum malaria were reported to be associated with low antibody avidities. This study was conducted to evaluate the role of age, malaria transmission intensity and incidence of clinical malaria in the induction of protective humoral immune response against P. falciparum malaria in children living in Burkina Faso. Methods We combined levels of IgG and IgG subclasses responses to P. falciparum antigens: Merozoite Surface Protein 3 (MSP3), Merozoite Surface Protein 2a (MSP2a), Merozoite Surface Protein 2b (MSP2b), Glutamate Rich Protein R0 (GLURP R0) and Glutamate Rich Protein R2 (GLURP R2) in plasma samples from 325 children under five (05) years with age, malaria transmission season and malaria incidence. Results We notice higher prevalence of P. falciparum infection in low transmission season compared to high malaria transmission season. While, parasite density was lower in low transmission than high transmission season. IgG against all antigens investigated increased with age. High levels of IgG and IgG subclasses to all tested antigens except for GLURP R2 were associated with the intensity of malaria transmission. IgG to MSP3, MSP2b, GLURP R2 and GLURP R0 were associated with low incidence of malaria. All IgG subclasses were associated with low incidence of P. falciparum malaria, but these associations were stronger for cytophilic IgGs. Conclusions On the basis of the data presented in this study, we conclude that the induction of humoral immune response to tested malaria antigens is related to age, transmission season level and incidence of clinical malaria
Single low dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission after artemether-lumefantrine in children with asymptomatic infection: a randomised, double-blind, placebo-controlled trial
Background: A single low dose (0.25 mg/kg) of primaquine is recommended as a gametocytocide in combination with artemisinin-based combination therapies for Plasmodium falciparum but its effect on post-treatment gametocyte circulation and infectiousness to mosquitoes has not been quantified.
Methods: In this randomised, double-blind, placebo-controlled trial, 360 asymptomatic parasitaemic children aged 2-15 years were enrolled and assigned to receive: artemether-lumefantrine (AL) and a dose of placebo; AL and a 0.25 mg/kg primaquine dose; or AL and a 0.40 mg/kg primaquine dose. On days 0, 2, 3, 7, 10 and 14, gametocytes were detected and quantified by microscopy, Pfs25 mRNA quantitative nucleic acid sequence based amplification (QT-NASBA), and quantitative reverse-transcriptase PCR (qRT-PCR). For a subset of participants, pre- and post-treatment infectiousness was assessed by mosquito feeding assays on days -1, 3, 7, 10 and 14.
Results: Both primaquine arms had lower gametocyte prevalences after day 3 compared to the placebo arm, regardless of gametocyte detection method. The mean (95 % confidence interval) number of days to gametocyte clearance in children with patent gametocytes on day 0 (N = 150) was 19.7 (14.6 – 24.8), 7.7 (6.3 – 9.1) and 8.2 (6.7 – 9.6) for the AL-placebo, the 0.25 mg/kg primaquine dose and the 0.40 mg/kg primaquine dose arms, respectively. While 38.0 % (30/79) of selected gametocytaemic individuals were infectious before treatment, only 1/251 participant, from the AL-placebo group, infected mosquitoes after treatment.
Conclusions: We observed similar gametocyte clearance rates after 0.25 and 0.40 mg/kg primaquine doses. Infectivity to mosquitoes after AL was very low and absent in primaquine arms
The use of a P. falciparum specific coiled-coil domain to construct a self-assembling protein nanoparticle vaccine to prevent malaria.
The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed. New antigens such as P27A and P27 have emerged as potential new vaccine candidates. Multiple studies have demonstrated that antigens are more immunogenic and are better correlated with protection when presented on particulate delivery systems. One such particulate delivery system is the self-assembling protein nanoparticle (SAPN) that relies on coiled-coil domains of proteins to form stable nanoparticles. In the past we have used de novo designed amino acid domains to drive the formation of the coiled-coil scaffolds which present the antigenic epitopes on the particle surface.
Here we use naturally occurring domains found in the tex1 protein to form the coiled-coil scaffolding of the nanoparticle. Thus, by engineering P27A and a new extended form of the coiled-coil domain P27 onto the N and C terminus of the SAPN protein monomer we have developed a particulate delivery system that effectively displays both antigens on a single particle that uses malaria tex1 sequences to form the nanoparticle scaffold. These particles are immunogenic in a murine model and induce immune responses similar to the ones observed in seropositive individuals in malaria endemic regions.
We demonstrate that our P27/P27A-SAPNs induce an immune response akin to the one in seropositive individuals in Burkina Faso. Since P27 is highly conserved among different Plasmodium species, these novel SAPNs may even provide cross-protection between Plasmodium falciparum and Plasmodium vivax the two major human malaria pathogens. As the SAPNs are also easy to manufacture and store they can be delivered to the population in need without complication thus providing a low cost malaria vaccine
- …