500 research outputs found
Theory of polarization enhancement in epitaxial BaTiO/SrTiO superlattices
The spontaneous polarization of epitaxial BaTiO/SrTiO superlattices
is studied as a function of composition using first-principles density
functional theory within the local density approximation. With the in-plane
lattice parameter fixed to that of bulk SrTiO, the computed superlattice
polarization is enhanced above that of bulk BaTiO for superlattices with
BaTiO fraction larger than 40%. In contrast to their bulk paraelectric
character, the SrTiO layers are found to be {\it tetragonal and polar},
possessing nearly the same polarization as the BaTiO layers. General
electrostatic arguments elucidate the origin of the polarization in the
SrTiO layers, with important implications for other ferroelectric
nanostructures.Comment: 4 pages, 2 Figures, 1 Tabl
Effective-Hamiltonian modeling of external pressures in ferroelectric perovskites
The phase-transition sequence of a ferroelectric perovskite such as BaTiO_3
can be simulated by computing the statistical mechanics of a first-principles
derived effective Hamiltonian [Zhong, Vanderbilt and Rabe, Phys. Rev. Lett. 73,
1861 (1994)]. Within this method, the effect of an external pressure (in
general, of any external field) can be studied by considering the appropriate
"enthalpy" instead of the effective Hamiltonian itself. The legitimacy of this
approach relies on two critical assumptions that, to the best of our knowledge,
have not been adequately discussed in the literature to date: (i) that the
zero-pressure relevant degrees of freedom are still the only relevant degrees
of freedom at finite pressures, and (ii) that the truncation of the Taylor
expansion of the energy considered in the effective Hamiltonian remains a good
approximation at finite pressures. Here we address these issues in detail and
present illustrative first-principles results for BaTiO_3. We also discuss how
to construct effective Hamiltonians in cases in which these assumptions do not
hold.Comment: 5 pages, with 2 postscript figures embedded. Proceedings of
"Fundamental Physics of Ferroelectrics, 2002", R. Cohen and T. Egami, eds.
(AIP, Melville, New York, 2002). Also available at
http://www.physics.rutgers.edu/~dhv/preprints/ji_effp/index.htm
Extrinsic models for the dielectric response of CaCu{3}Ti{4}O{12}
The large, temperature-independent, low-frequency dielectric constant
recently observed in single-crystal CaCu{3}Ti{4}O{12} is most plausibly
interpreted as arising from spatial inhomogenities of its local dielectric
response. Probable sources of inhomogeneity are the various domain boundaries
endemic in such materials: twin, Ca-ordering, and antiphase boundaries. The
material in and neighboring such boundaries can be insulating or conducting. We
construct a decision tree for the resulting six possible morphologies, and
derive or present expressions for the dielectric constant for models of each
morphology. We conclude that all six morphologies can yield dielectric behavior
consistent with observations and suggest further experiments to distinguish
among them.Comment: 9 pages, with 1 postscript figure embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/mc_ext/index.htm
Band Gap and Edge Engineering via Ferroic Distortion and Anisotropic Strain: The Case of SrTiO
The effects of ferroic distortion and biaxial strain on the band gap and band
edges of SrTiO (STO) are calculated using density functional theory and
many-body perturbation theory. Anisotropic strains are shown to reduce the gap
by breaking degeneracies at the band edges. Ferroic distortions are shown to
widen the gap by allowing new band edge orbital mixings. Compressive biaxial
strains raise band edge energies, while tensile strains lower them. To reduce
the STO gap, one must lower the symmetry from cubic while suppressing ferroic
distortions. Our calculations indicate that for engineered orientation of the
growth direction along [111], the STO gap can be controllably and considerably
reduced at room temperature.Comment: 5 pages, 5 figures. To be published in Phys. Rev. Let
First-principles study of epitaxial strain in perovskites
Using an extension of a first-principles method developed by King-Smith and
Vanderbilt [Phys. Rev. B {\bf 49}, 5828 (1994)], we investigate the effects of
in-plane epitaxial strain on the ground-state structure and polarization of
eight perovskite oxides: BaTiO, SrTiO, CaTiO, KNbO, NaNbO,
PbTiO, PbZrO, and BaZrO. In addition, we investigate the effects of
a nonzero normal stress. The results are shown to be useful in predicting the
structure and polarization of perovskite oxide thin films and superlattices.Comment: 10 page
- …