6 research outputs found

    Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths

    No full text
    Using a collection near-field microscope, we image interaction of surface plasmon-polaritons (SPPs) excited locally at telecom wavelengths with periodic triangular arrays of gold bumps placed on gold film surfaces. We observe the inhibition of SPP propagation into the arrays within a certain wavelength range depending on their period and orientation, i.e., the band gap (BG) effect, as well as the SPP propagation along bent channels cut through these arrays. Prospects and challenges in realization of compact and efficient SPPBG waveguiding structures are discussed

    Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths

    No full text
    Using a collection near-field microscope, we image interaction of surface plasmon-polaritons (SPPs) excited locally at telecom wavelengths with periodic triangular arrays of gold bumps placed on gold film surfaces. We observe the inhibition of SPP propagation into the arrays within a certain wavelength range depending on their period and orientation, i.e., the band gap (BG) effect, as well as the SPP propagation along bent channels cut through these arrays. Prospects and challenges in realization of compact and efficient SPPBG waveguiding structures are discussed

    Adiabatic bends in surface plasmon polariton band gap structures

    No full text
    Propagation and interaction of surface plasmon polaritons (SPPs) excited in the wavelength range 700–860 nm with periodic triangular arrays of gold bumps placed on gold film surfaces are investigated using a collection near-field microscope. We observe the inhibition of SPP propagation into the arrays within a certain wavelength range, i.e., the band gap (BG) effect. We demonstrate also the SPP propagation along a 30° bent channel obtained by an adiabatic rotation of the periodic array of scatterers. Numerical simulations using the Lippmann-Schwinger integral equation method are presented and found in reasonable agreement with the experimental results

    Adiabatic bends in surface plasmon polariton band gap structures

    No full text
    Propagation and interaction of surface plasmon polaritons (SPPs) excited in the wavelength range 700–860 nm with periodic triangular arrays of gold bumps placed on gold film surfaces are investigated using a collection near-field microscope. We observe the inhibition of SPP propagation into the arrays within a certain wavelength range, i.e., the band gap (BG) effect. We demonstrate also the SPP propagation along a 30° bent channel obtained by an adiabatic rotation of the periodic array of scatterers. Numerical simulations using the Lippmann-Schwinger integral equation method are presented and found in reasonable agreement with the experimental results
    corecore