555 research outputs found
A spatially extended model for macroscopic spike-wave discharges
Spike-wave discharges are a distinctive feature of epileptic seizures. So far, they have not been reported in spatially extended neural field models. We study a space-independent version of the Amari neural field model with two competing inhibitory populations. We show that this competition leads to robust spike-wave dynamics if the inhibitory populations operate on different time-scales. The spike-wave oscillations present a fold/homoclinic type bursting. From this result we predict parameters of the extended Amari system where spike-wave oscillations produce a spatially homogeneous pattern. We propose this mechanism as a prototype of macroscopic epileptic spike-wave discharges. To our knowledge this is the first example of robust spike-wave patterns in a spatially extended neural field model
Energy storage for power flow management and voltage control on an 11 kV UK distribution network”.
ABSTRAC
Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy
Patients with idiopathic generalised epilepsy (IGE) typically have normal
conventional magnetic resonance imaging (MRI), hence MRI based diagnosis is
challenging. Anatomical abnormalities underlying brain dysfunctions in IGE are
unclear and their relation to the pathomechanisms of epileptogenesis is poorly
understood. In this study, we applied connectometry, an advanced quantitative
neuroimaging technique for investigating localised changes in white-matter
tissue. Analysing white matter structures of 32 subjects we incorporated our
findings in a computational model of seizure dynamics to suggest a plausible
mechanism of epileptogenesis. Patients with IGE have significant bilateral
alterations in major white-matter fascicles. In the cingulum, fornix, and
superior longitudinal fasciculus, tract integrity is compromised, whereas in
specific parts of tracts between thalamus and the precentral gyrus, tract
integrity is enhanced in patients. Combining these alterations in a logistic
regression model, we computed the decision boundary that discriminated patients
and controls. The computational model, informed with the findings on the tract
abnormalities, specifically highlighted the importance of enhanced
cortico-reticular connections along with impaired cortico-cortical connections
in inducing pathological seizure-like dynamics. We emphasise taking
directionality of brain connectivity into consideration towards understanding
the pathological mechanisms; this is possible by combining neuroimaging and
computational modelling. Our imaging evidence of structural alterations suggest
the loss of cortico-cortical and enhancement of cortico-thalamic fibre
integrity in IGE. We further suggest that impaired connectivity from cortical
regions to the thalamic reticular nucleus offers a therapeutic target for
selectively modifying the brain circuit for reversing the mechanisms leading to
epileptogenesis
Recommended from our members
Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts
We have hypothesized that T cell cytokines participate in the pathogenesis of graft arterial disease (GAD). This study tested the consequences of IFN-gamma deficiency on arterial and parenchymal pathology in murine cardiac allografts. Hearts from C-H-2(bm12)KhEg (bm12, H-2(bm12)) were transplanted into C57/B6 (B6, H-2(b)), wild-type, or B6 IFN-gamma-deficient (GKO) recipients after immunosuppression by treatment with anti-CD4 and anti-CD8 mAbs. In wild-type recipients, myocardial rejection peaked at 4 wk, (grade 2. 1+/-0.3 out of 4, mean+/-SEM, n = 9), and by 8-12 wk evolved coronary arteriopathy. At 12 wk, the GAD score was 1.4+/-0.3, and the parenchymal rejection grade was 1.2+/-0.3 (n = 8). In GKO recipients of bm12 allografts, myocardial rejection persisted at 12 wk (grade 2.5+/-0.3, n = 6), but no GAD developed (score: 0.0+/-0.0, n = 6, P < 0.01 vs. wild-type). Mice treated with anti-IFN-gamma mAbs showed similar results. Isografts generally showed no arterial changes. In wild-type recipients, arterial and parenchymal cells showed increased MHC class II molecules, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 compared to normal or isografted hearts. The allografts in GKO recipients showed attenuated expression of these molecules (n = 6). Thus, development of GAD, but not parenchymal rejection, requires IFN-gamma. Reduced expression of MHC antigens and leukocyte adhesion molecules may contribute to the lack of coronary arteriopathy in hearts allografted into GKO mice
The Impact of Temporal Lobe Epilepsy Surgery on Picture Naming and its Relationship to Network Metric Change
Background:
Anterior temporal lobe resection (ATLR) is a successful treatment for medically-refractory temporal lobe epilepsy (TLE). In the language-dominant hemisphere, 30%- 50% of individuals experience a naming decline which can impact upon daily life. Measures of structural networks are associated with language performance pre-operatively. It is unclear if analysis of network measures may predict post-operative decline.
Methods:
White matter fibre tractography was performed on preoperative diffusion MRI of 44 left lateralised and left resection individuals with TLE to reconstruct the preoperative structural network. Resection masks, drawn on co-registered pre- and post-operative T1-weighted MRI scans, were used as exclusion regions on pre-operative tractography to estimate the post-operative network. Changes in graph theory metrics, cortical strength, betweenness centrality, and clustering coefficient were generated by comparing the estimated pre- and post-operative networks. These were thresholded based on the presence of the connection in each patient, ranging from 75% to 100% in steps of 5%. The average graph theory metric across thresholds was taken.
We incorporated leave-one-out cross-validation with smoothly clipped absolute deviation (SCAD) least absolute shrinkage and selection operator (LASSO) feature selection and a support vector classifier to assess graph theory metrics on picture naming decline. Picture naming was assessed via the Graded Naming Test preoperatively and at 3 and 12 months post-operatively and the outcome was classified using the reliable change index (RCI) to identify clinically significant decline. The best feature combination and model was selected using the area under the curve (AUC). The sensitivity, specificity and F1-score were also reported. Permutation testing was performed to assess the machine learning model and selected regions difference significance.
Results:
A combination of clinical and graph theory metrics were able to classify outcome of picture naming at 3 months with an AUC of 0.84. At 12 months, change in strength to cortical regions was best able to correctly classify outcome with an AUC of 0.86. Longitudinal analysis revealed that betweenness centrality was the best metric to identify patients who declined at 3 months, who will then continue to experience decline from 3-12 months. Both models were significantly higher AUC values than a random classifier.
Conclusion:
Our results suggest that inferred changes of network integrity were able to correctly classify picture naming decline after ATLR. These measures may be used to prospectively to identify patients who are at risk of picture naming decline after surgery and could potentially be utilised to assist tailoring the resection in order to prevent this decline
Contribution of White Matter Fiber Bundle Damage to Language Change After Surgery for Temporal Lobe Epilepsy.
Background and Objectives:In medically refractory temporal lobe epilepsy (TLE), 30-50% of patients experience substantial language decline following resection in the language dominant hemisphere. Here, we investigate the contribution of white matter fiber bundle damage to language change at 3- and 12-months after surgery.Methods:We studied 127 patients who underwent TLE surgery from 2010–2019. Neuropsychological testing included picture naming, semantic, and phonemic verbal fluency, performed pre-operatively, 3- and 12-months post-operatively. Outcome was assessed using reliable change index (RCI; clinically significant decline) and change across timepoints (post- minus pre-operative scores).Functional MRI was used to determine language lateralization. The arcuate (AF), inferior fronto-occipital (IFOF), inferior longitudinal, middle longitudinal (MLF), and uncinate fasciculi were mapped using diffusion MRI probabilistic tractography. Resection masks, drawn comparing co-registered pre- and post-operative T1 MRI scans, were used as exclusion regions on pre-operative tractography to estimate the percentage of pre-operative tracts transected in surgery. Chi-squared assessments evaluated the occurrence of RCI-determined language decline. Independent samples T-tests and MM-estimator robust regressions were used to assess the impact of clinical factors and fiber transection on RCI and change outcomes, respectively.Results:Language dominant and non-dominant resections were treated separately for picture naming, as post-operative outcomes were significantly different between these groups. In language dominant hemisphere resections, greater surgical damage to the AF and IFOF was related to RCI-decline at 3 months. Damage to the inferior frontal sub-fasciculus of the IFOF was related to change at 3 months. In language non-dominant hemisphere resections, increased MLF resection was associated with RCI-decline at 3 months, and damage to the anterior sub-fasciculus was related to change at 3 months.Language dominant and non-dominant resections were treated as one cohort for semantic and phonemic fluency, as there were no significant differences in post-operative decline between these groups. Post-operative seizure freedom was associated with an absence of significant language decline 12 months after surgery for semantic fluency.Discussion:We demonstrate a relationship between fiber transection and naming decline after temporal lobe resection. Individualized surgical planning to spare white matter fiber bundles could help to preserve language function after surgery
- …