48 research outputs found

    Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics

    Get PDF
    A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) and other signaling enzymes to distinct subcellular organelles. Using the yeast two-hybrid approach, we demonstrate that Rab32, a member of the Ras superfamily of small molecular weight G-proteins, interacts directly with the type II regulatory subunit of PKA. Cellular and biochemical studies confirm that Rab32 functions as an AKAP inside cells. Anchoring determinants for PKA have been mapped to sites within the conserved α5 helix that is common to all Rab family members. Subcellular fractionation and immunofluorescent approaches indicate that Rab32 and a proportion of the cellular PKA pool are associated with mitochondria. Transient transfection of a GTP binding–deficient mutant of Rab32 promotes aberrant accumulation of mitochondria at the microtubule organizing center. Further analysis of this mutant indicates that disruption of the microtubule cytoskeleton results in aberrantly elongated mitochondria. This implicates Rab32 as a participant in synchronization of mitochondrial fission. Thus, Rab32 is a dual function protein that participates in both mitochondrial anchoring of PKA and mitochondrial dynamics

    Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of Toxoplasma gondii infection

    Get PDF
    Toxoplasma gondii is an important human pathogen infecting an estimated one in three people worldwide. The cytokine interferon gamma (IFNÎł) is induced during infection and is critical for restricting T. gondii growth in human cells. Growth restriction is presumed to be due to the induction of interferon-stimulated genes (ISGs) that are upregulated to protect the host from infection. Although there are hundreds of ISGs induced by IFNÎł, their individual roles in restricting parasite growth in human cells remain somewhat elusive. To address this deficiency, we screened a library of 414 IFNÎł induced ISGs to identify factors that impact T. gondii infection in human cells. In addition to IRF1, which likely acts through the induction of numerous downstream genes, we identified RARRES3 as a single factor that restricts T. gondii infection by inducing premature egress of the parasite in multiple human cell lines. Overall, while we successfully identified a novel IFNÎł induced factor restricting T. gondii infection, the limited number of ISGs capable of restricting T. gondii infection when individually expressed suggests that IFNÎł-mediated immunity to T. gondii infection is a complex, multifactorial process

    Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions

    Get PDF
    SummaryMany bacterial pathogens use the type III secretion system to inject “effector” proteins into host cells. Here, we report the identification of a 24 member effector protein family found in pathogens including Salmonella, Shigella, and enteropathogenic E. coli. Members of this family subvert host cell function by mimicking the signaling properties of Ras-like GTPases. The effector IpgB2 stimulates cellular responses analogous to GTP-active RhoA, whereas IpgB1 and Map function as the active forms of Rac1 and Cdc42, respectively. These effectors do not bind guanine nucleotides or have sequences corresponding the conserved GTPase domain, suggesting that they are functional but not structural mimics. However, several of these effectors harbor intracellular targeting sequences that contribute to their signaling specificities. The activities of IpgB2, IpgB1, and Map are dependent on an invariant WxxxE motif found in numerous effectors leading to the speculation that they all function by a similar molecular mechanism

    The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways

    Get PDF
    Bacterial toxins and effector proteins hijack eukaryotic enzymes that are spatially localized and display rapid signaling kinetics. However, the molecular mechanisms by which virulence factors engage highly dynamic substrates in the host cell environment are poorly understood. Here, we demonstrate that the enteropathogenic Escherichia coli (EPEC) type III effector protein EspF nucleates a multiprotein signaling complex composed of eukaryotic sorting nexin 9 (SNX9) and neuronal Wiskott-Aldrich syndrome protein (N-WASP). We demonstrate that a specific and high affinity association between EspF and SNX9 induces membrane remodeling in host cells. These membrane-remodeling events are directly coupled to N-WASP/Arp2/3–mediated actin nucleation. In addition to providing a biochemical mechanism of EspF function, we find that EspF dynamically localizes to membrane-trafficking organelles in a spatiotemporal pattern that correlates with SNX9 and N-WASP activity in living cells. Thus, our findings suggest that the EspF-dependent assembly of SNX9 and N-WASP represents a novel form of signaling mimicry used to promote EPEC pathogenesis and gastrointestinal disease

    A-Kinase Anchoring in Dendritic Cells Is Required for Antigen Presentation

    Get PDF
    BACKGROUND: Dendritic cells (DC) are the most potent antigen presenting cells (APC) of the immune system. Prostaglandin E(2), cyclic AMP, and protein kinase A (PKA) have all been shown to regulate DC maturation and activity. In other cells, the ability of these molecules to convey their signals has been shown to be dependent on A-kinase anchoring proteins (AKAPs). Here we present evidence for the existence and functional importance of AKAPs in human DC. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence and/or western analyses we identify AKAP79, AKAP149, AKAP95, AKAP LBC and Ezrin. We also demonstrate by western analysis that expression of AKAP79, AKAP149 and RII are upregulated with DC differentiation and maturation. We establish the functional importance of PKA anchoring in multiple aspects of DC biology using the anchoring inhibitor peptides Ht31 and AKAP-IS. Incubation of protein or peptide antigen loaded DC with Ht31 or AKAP-IS results in a 30-50% decrease in antigen presentation as measured by IFN-gamma production from antigen specific CD4(+) T cells. Incubation of LPS treated DC with Ht31 results in 80% inhibition of TNF-alpha and IL-10 production. Ht31 slightly decreases the expression of CD18 and CD11a and CD11b, slightly increases the basal expression of CD83, dramatically decreases the LPS stimulated expression of CD40, CD80 and CD83, and significantly increases the expression of the chemokine receptor CCR7. CONCLUSIONS: These experiments represent the first evidence for the functional importance of PKA anchoring in multiple aspects of DC biology

    The Role of A-Kinase Anchoring Proteins in cAMP-Mediated Signal Transduction Pathways

    No full text
    corecore