122 research outputs found

    Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration

    Get PDF
    Covalent immobilization of resveratrol onto cellulose acetate polymeric membranes used as coating on a Mg-1Ca-0.2Mn-0.6Zr alloy is presented for potential application in the improvement of osseointegration processes. For this purpose, cellulose acetate membrane is hydrolysed in the presence of potassium hydroxide, followed by covalent immobilization of aminopropyl triethoxy silane. Resveratrol was immobilized onto membranes using glutaraldehyde as linker. The newly synthesised functional membranes were thoroughly characterized for their structural characteristics determination employing X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetric analysis (TGA/DTG) and scanning electron microscopy (SEM) techniques. Subsequently, in vitro cellular tests were performed for evaluating the cytotoxicity biocompatibility of synthesized materials and also the osseointegration potential of obtained derivatised membrane material. It was demonstrated that both polymeric membranes support viability and proliferation of the pre-osteoblastic MC3T3-E1 cells, thus providing a good protection against the potential harmful effects of the compounds released from coated alloys. Furthermore, cellulose acetate membrane functionalized with resveratrol exhibits a significant increase in alkaline phosphatase activity and extracellular matrix mineralization, suggesting its suitability to function as an implant surface coating for guided bone regeneration

    Atomic-scale confinement of optical fields

    Full text link
    In the presence of matter there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically-defined gaps reaching below 0.5 nm. The existence of atomically-confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically-resolved spectroscopic imaging, deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the realization of novel quantum-optical devices

    Ultrafast nano-focusing with full optical waveform control

    Full text link
    The spatial confinement and temporal control of an optical excitation on nanometer length scales and femtosecond time scales has been a long-standing challenge in optics. It would provide spectroscopic access to the elementary optical excitations in matter on their natural length and time scales and enable applications from ultrafast nano-opto-electronics to single molecule quantum coherent control. Previous approaches have largely focused on using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides to generate nanometer localized excitations. However, these implementations generally suffer from mode mismatch between the far-field propagating light and the near-field confinement. In addition, the spatial localization in itself may depend on the spectral phase and amplitude of the driving laser pulse thus limiting the degrees of freedom available to independently control the nano-optical waveform. Here we utilize femtosecond broadband SPP coupling, by laterally chirped fan gratings, onto the shaft of a monolithic noble metal tip, leading to adiabatic SPP compression and localization at the tip apex. In combination with spectral pulse shaping with feedback on the intrinsic nonlinear response of the tip apex, we demonstrate the continuous micro- to nano-scale self-similar mode matched transformation of the propagating femtosecond SPP field into a 20 nm spatially and 16 fs temporally confined light pulse at the tip apex. Furthermore, with the essentially wavelength and phase independent 3D focusing mechanism we show the generation of arbitrary optical waveforms nanofocused at the tip. This unique femtosecond nano-torch with high nano-scale power delivery in free space and full spectral and temporal control opens the door for the extension of the powerful nonlinear and ultrafast vibrational and electronic spectroscopies to the nanoscale.Comment: Contains manuscript with 4 figures as well as supplementary material with 2 figure

    A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

    Full text link
    • …
    corecore