5 research outputs found

    Blinding for precision scattering experiments: The MUSE approach as a case study

    Full text link
    Human bias is capable of changing the analysis of measured data sufficiently to alter the results of an experiment. It is incumbent upon modern experiments, especially those investigating quantities considered contentious in the broader community, to blind their analysis in an effort to minimize bias. The choice of a blinding model is experiment specific, but should also aim to prevent accidental release of results before an analysis is finalized. In this paper, we discuss common threats to an unbiased analysis, as well as common quantities that can be blinded in different types of nuclear physics experiments. We use the Muon Scattering Experiment as an example, and detail the blinding scheme used therein.Comment: 6 pages, 3 figure

    Instrumental uncertainties in radiative corrections for the MUSE experiment

    Full text link
    The MUSE experiment at the Paul Scherrer Institute is measuring elastic lepton-proton scattering cross sections in a four-momentum transfer range from Q2Q^2 of approximately 0.002 to 0.08 GeV2^2 using positively and negatively charged electrons and muons. The extraction of the Born cross sections from the experimental data requires radiative corrections. Estimates of the instrumental uncertainties in those corrections have been made using the ESEPP event generator. The results depend in particular on the minimum lepton momentum that contributes to the experimental cross section and the fraction of events with hard initial-state radiation that is detected in the MUSE calorimeter and is excluded from the data. These results show that the angular-dependent instrumental uncertainties in radiative corrections to the electron cross section are better than 0.4 % and are negligible for the muon cross section.Comment: Article to be submitted to the EPJ A Topical Collection on radiative corrections. 9 pages, 5 figures, 2 table
    corecore