4 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Hydroxychloroquine and Azithromycin Treatment of Hospitalized Patients Infected with SARS-CoV-2 in Senegal from March to October 2020

    No full text
    International audienceAs of today, little data is available on COVID-19 in African countries, where the case management relied mainly on a treatment by association between hydroxychloroquine (HCQ) and azithromycin (AZM). This study aimed to understand the main clinical outcomes of COVID-19 hospitalized patients in Senegal from March to October 20202. We described the clinical characteristics of patients and analysed clinical status (alive and discharged versus hospitalized or died) at 15 days after Isolation and Treatment Centres (ITC) admission among adult patients who received HCQ plus AZM and those who did not receive this combination. A total of 926 patients were included in this analysis. Six hundred seventy-four (674) (72.8%) patients received a combination of HCQ and AZM. Results showed that the proportion of patient discharge at D15 was significantly higher for patients receiving HCQ plus AZM (OR: 1.63, IC 95% (1.09–2.43)). Factors associated with a lower proportion of patients discharged alive were: age ≥ 60 years (OR: 0.55, IC 95% (0.36–0.83)), having of at least one pre-existing disorder (OR: 0.61, IC 95% (0.42–0.90)), and a high clinical risk at admission following NEWS score (OR: 0.49, IC 95% (0.28–0.83)). Few side effects were reported including 2 cases of cardiac rhythmic disorders in the HCQ and AZM group versus 13 in without HCQ + AZM. An improvement of clinical status at 15 days was found for patients exposed to HCQ plus AZM combinatio

    Feasibility of a randomized clinical trial evaluating a community intervention for household tuberculosis child contact management in Cameroon and Uganda

    No full text
    Background: One of the main barriers of the management of household tuberculosis child contacts is the necessity for parents to bring healthy children to the facility. We assessed the feasibility of a community intervention for tuberculosis (TB) household child contact management and the conditions for its evaluation in a cluster randomized controlled trial in Cameroon and Uganda.Methods: We assessed three dimensions of feasibility using a mixed method approach: (1) recruitment capability using retrospective aggregated data from facility registers; (2) acceptability of the intervention using focus group discussions with TB patients and in-depth interviews with healthcare providers and community leaders; and (3) adaptation, integration, and resources of the intervention in existing TB services using a survey and discussions with stakeholders.Results: Reaching the sample size is feasible in all clusters in 15 months with the condition of regrouping 2 facilities in the same cluster in Uganda due to decentralization of TB services. Community health worker (CHW) selection and training and simplified tools for contact screening, tolerability, and adherence of preventive therapy were key elements for the implementation of the community intervention. Healthcare providers and patients found the intervention of child contact investigations and TB preventive treatment management in the household acceptable in both countries due to its benefits (competing priorities, transport cost) as compared to facility-based management. TB stigma was present, but not a barrier for the community intervention. Visit schedule and team conduct were identified as key facilitators for the intervention.Conclusions: This study shows that evaluating a community intervention for TB child contact management in a cluster randomized trial is feasible in Cameroon and Uganda.Trial registration: Clini calTr ials. gov NCT03832023 . Registered on February 6th 2019
    corecore