9 research outputs found

    Reemergence of Sylvatic Dengue Virus in Southern Senegal, 2021

    Get PDF
    As part of the syndromic surveillance of fever in Senegal, the virology department at Institut Pasteur de Dakar (IPD) in collaboration with the Epidemiology Unit and the Senegalese Ministry of Health conducted syndromic surveillance of fever in Senegal. Sample are from all suspected arboviral infections patients attending any of the sentinel sites. Collected blood samples were sent on a weekly basis at WHOCC for arboviruses and hemorrhagic fever viruses for screening of seven medically important arboviruses, including dengue virus (DENV). From January to December 2021, 2010 suspected cases were received among them 124 for confirmed to be DENV+ by RT-qPCR attempt of serotyping led to the detection of atypical DENV case from Sare Yoba area (Kolda region) which is unable to be correctly assigned to a serotype by the available tools (TIB Molbiol Modular Dx Dengue typing kit). Performed genome sequencing et phylogenetic analysis leads to the identification of a sylvatic DENV-2 strain closely related to a virus previously detected in Guinee-Bissau in 2009. This finding constitutes proof of the contemporary circulation of DENV-2 strain belonging to the sylvatic cycle in addition to well-known epidemic strains; this adds a piece of complexity to dengue management in Senegal. Alarmingly, it calls for improved genomic surveillance of DENV to know the genetic diversity of circulating strains in order to strengthen future vaccination policies

    Detection of Crimean–Congo Haemorrhagic Fever Virus from Livestock Ticks in Northern, Central and Southern Senegal in 2021

    No full text
    Crimean–Congo haemorrhagic fever virus (CCHFV) occurs sporadically in Senegal, with a few human cases each year. This active circulation of CCHFV motivated this study which investigated different localities of Senegal to determine the diversity of tick species, tick infestation rates in livestock and livestock infections with CCHFV. The samples were collected in July 2021 from cattle, sheep and goats in different locations in Senegal. Tick samples were identified and pooled by species and sex for CCHFV detection via RT-PCR. A total of 6135 ticks belonging to 11 species and 4 genera were collected. The genus Hyalomma was the most abundant (54%), followed by Amblyomma (36.54%), Rhipicephalus (8.67%) and Boophilus (0.75%). The prevalence of tick infestation was 92%, 55% and 13% in cattle, sheep and goats, respectively. Crimean–Congo haemorrhagic fever virus (CCHFV) was detected in 54/1956 of the tested pools. The infection rate was higher in ticks collected from sheep (0.42/1000 infected ticks) than those from cattle (0.13/1000), while all ticks collected from goats were negative. This study confirmed the active circulation of CCHFV in ticks in Senegal and highlights their role in the maintenance of CCHFV. It is imperative to take effective measures to control tick infestation in livestock to prevent future CCHFV infections in humans

    Genomic Characterization of a BataĂŻ Orthobunyavirus, Previously Classified as Ilesha Virus, from Field-Caught Mosquitoes in Senegal, Bandia 1969

    No full text
    Bataï virus (BATV), belonging to the Orthobunyavirus genus, is an emerging mosquito-borne virus with documented cases in Asia, Europe, and Africa. It causes various symptoms in humans and ruminants. Another related virus is Ilesha virus (ILEV), which causes a range of diseases in humans and is mainly found in African countries. This study aimed to genetically identify and characterize a BATV strain previously misclassified as ILEV in Senegal. The strain was reactivated and subjected to whole genome sequencing using an Illumina-based approach. Genetic analyses and phylogeny were performed to assess the evolutionary relationships. Genomic analyses revealed a close similarity between the Senegal strain and the BATV strains UgMP-6830 from Uganda. The genetic distances indicated high homology. Phylogenetic analysis confirmed the Senegal strain’s clustering with BATV. This study corrects the misclassification, confirming the presence of BATV in West Africa. This research represents the first evidence of BATV circulation in West Africa, underscoring the importance of genomic approaches in virus classification. Retrospective sequencing is crucial for reevaluating strains and identifying potential public health threats among neglected viruses

    Human and Livestock Surveillance Revealed the Circulation of Rift Valley Fever Virus in Agnam, Northern Senegal, 2021

    No full text
    The mosquito-borne disease caused by the Rift Valley Fever Virus (RVFV) is a viral hemorrhagic fever that affects humans and animals. In 1987, RVFV emerged in Mauritania, which caused the first RVFV outbreak in West Africa. This outbreak was shortly followed by reported cases in humans and livestock in Senegal. Animal trade practices with neighboring Mauritania suggest northern regions of Senegal are at high risk for RVF. In this study, we aim to conduct a molecular and serological survey of RVFV in humans and livestock in Agnam (northeastern Senegal) by RT-PCR (reverse transcription real-time polymerase chain reaction) and ELISA (Enzyme-Linked Immunosorbent Assay), respectively. Of the two hundred fifty-five human sera, one (0.39%) tested RVFV IgM positive, while fifty-three (20.78%) tested positive for RVFV IgG. For animal monitoring, out of 30 sheep recorded and sampled over the study period, 20 (66.67%) showed seroconversion to RVFV IgG antibodies, notably during the rainy season. The presence of antibodies increased significantly with age in both groups (p < 0.05), as the force of RVF infection (FOI), increased by 16.05% per year for humans and by 80.4% per month for livestock sheep. This study supports the usefulness of setting up a One Health survey for RVF management

    Crimean&ndash;Congo Hemorrhagic Fever Virus Survey in Humans, Ticks, and Livestock in Agnam (Northeastern Senegal) from February 2021 to March 2022

    No full text
    Crimean&ndash;Congo hemorrhagic fever virus (CCHFV) is widespread in Asia, Europe, and Africa. In Senegal, sporadic cases of CCHFV have been reported since 1960. Bordering Mauritania in northeastern Senegal, Agnam is an arid area in the region of Matam where CCHFV is endemic, which harbors a pastoralist community. Given the drought conditions of Agnam, inhabitants are in constant movement with their animals in search of pasture, which brings them into contact with pathogens such as arboviruses. To identify CCHFV in this area, we established a One Health site in order to analyze animal livestock, ticks and human samples collected over a one-year period by qRT-PCR and ELISA. Our analysis showed one (1/364) patient carried anti-CCHFV IgM and thirty-seven carried anti-CCHFV IgG (37/364). In livestock, anti-CCHFV IgG was detected in 13 (38.24%) of 34 sentinel sheep. The risk of CCHFV infection increased significatively with age in humans (p-value = 0.00117) and sheep (p-value = 1.18 &times; 10&minus;11). Additional risk factors for CCHFV infection in sheep were dry seasons (p-value = 0.004) and time of exposure (p-value = 0.007). Furthermore, we detected a total of three samples with CCHFV RNA within Rhipicephalus evertsi evertsi and Rhipicephalus guilhoni tick species. Our results highlighted the usefulness of a One Health survey of CCHFV in pastoral communities at risk of arboviruses

    Whole Genome Sequencing Analysis of African Orthobunyavirus Isolates Reveals Naturally Interspecies Segments Recombinations between Bunyamwera and Ngari Viruses

    No full text
    Bunyamwera virus is the prototype of the Bunyamwera serogroup, which belongs to the order Bunyavirales of the Orthobunyavirus genus in the Peribunyaviridae family. Bunyamwera is a negative-sense RNA virus composed of three segments S, M, and L. Genetic recombination is possible between members of this order as it is already documented. Additionally, it can lead to pathogenic or host range improvement, if it occurs with viruses of public health and agricultural importance such as Rift Valley fever virus and Crimea–Congo hemorrhagic fever virus. Here, we characterize five African Orthobunyavirus viruses from different geographical regions. Our results suggest that the five newly characterized strains are identified as Bunyamwera virus strains. Furthermore, two of the five strains sequenced in this study are recombinant strains, as fragments of their segments are carried by Ngari and Bunyamwera strains. Further investigations are needed to understand the functional impact of these recombinations

    Molecular Detection and Genetic Characterization of Two Dugbe Orthonairovirus Isolates Detected from Ticks in Southern Senegal

    No full text
    Dugbe virus (DUGV) is a tick-borne arbovirus first isolated in Nigeria in 1964. It has been detected in many African countries using such diverse methods as serological tests, virus isolation, and molecular detection. In Senegal, reports of DUGV isolates mainly occurred in the 1970s and 1980s. Here, we report a contemporary detection of three novel DUGV isolates upon screening of a total of 2877 individual ticks regrouped into 844 pools. The three positive pools were identified as Amblyomma variegatum, the main known vector of DUGV, collected in the southern part of the country (Kolda region). Interestingly, phylogenetic analysis indicates that the newly sequenced isolates are globally related to the previously characterized isolates in West Africa, thus highlighting potentially endemic, unnoticed viral transmission. This study was also an opportunity to develop a rapid and affordable protocol for full-genome sequencing of DUGV using nanopore technology. The results suggest a relatively low mutation rate and relatively conservative evolution of DUGV isolates

    The Spatiotemporal Distribution and Molecular Characterization of Circulating Dengue Virus Serotypes/Genotypes in Senegal from 2019 to 2023

    No full text
    Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1–3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country

    Reemergence of Sylvatic Dengue Virus Serotype 2 in Kedougou, Senegal, 2020

    No full text
    In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal
    corecore